

Energy Statement for Planning

Client: Calm Home Developments Ltd Suite 18, 4th Floor Amp House Dingwall Road Croydon CR0 2LX

Site Details: 35 Crescent Road Caterham CR3 6LE

Proposals: The construction of 4 residential terrace houses

Contents:

1	Introduction	3
2	Existing and Proposed Development	4
3	SAP 2012 and Building Regulations (2013)	5
4	Baseline Scenario (Part L1A Compliance)	6
5	Be Lean Energy Efficiency Improvement Scenario	7
6	Renewable Technology Review	. 10
7	Be Green Renewable Technology Scenario	. 15
8	Conclusion	. 17

Appendices:

- Appendix A: Sample TER Worksheet Dwelling 1 No Renewable Technology (Baseline Scenario)
- Appendix B: Sample DER Worksheet– Dwelling 1 With Energy Efficient Measures
- Appendix C: Sample DER Worksheet– Dwelling 1 With Renewable Technology

Report Details:

Prepared by	Prepared by Checked by I		Project	Revision	
Nicholas Gardner	Peter Kinsella (BSc Hons)	16.03.2024	9434	2.0	

1 Introduction

This Energy Statement report has been prepared in support of the planning application for the construction of 4 residential terrace houses at 35 Crescent Road, Caterham, CR3 6LE.

Tandridge District Council Core Strategy (Policy CSP 14 Sustainable Construction) states:

Policy CSP 14

Sustainable Construction

The Council will encourage all residential development (either new build or conversion) to meet Code level 3 as set out in the published Code for Sustainable Homes. Commercial* development with a floor area of 500m² or greater will be encouraged to meet the BREEAM "Very Good" standard.

All new residential development (either new build or conversion) and commercial* development with a floor area of $500m^2$ or greater will be required to reach a minimum percentage saving in CO₂ emissions through the incorporation of on-site renewable energy (as set out in the table below). The requirement varies according to the type of development and in the case of dwellings, the size of development.

Development Type	Percentage savings in Carbon Dioxide emissions through the provision of renewable energy technologies
Dwellings (1-9 units)	10%
Dwellings (10 + units)	20%**
Commercial* (500m ² +)	10%

Development over 5000m² will be expected to incorporate combined heat and power or similar technology.

Small scale renewable energy projects will be permitted except where there are overriding environmental, heritage, landscape, amenity or other constraints.

* Commercial includes all forms of non-residential development, for example social and leisure related development.

**Only where a developer can satisfy the Council why the higher target of 20% cannot be achieved will the lower target of 10% be applied.

Based on the above, the proposed dwelling will need to achieve a 10% saving in CO2 emissions through the provision of renewable technologies.

This report demonstrates how the dwellings will meet current L1A Building Regulation requirements for energy efficiency (baseline scenario) and, through an assessment of energy efficient measured and renewable technologies, demonstrates how the dwelling can achieve the required 10% saving in CO2 emissions.

2 Existing and Proposed Development

The site is located at 35 Crescent Road, Caterham, CR3 6LE. (see Figure 1).

As previously detailed, proposals are for the construction of 4 residential terrace houses at 35 Crescent Road, Caterham, CR3 6LE.

The dwellings will face in a Westerly direction.

Given the scale and nature of the site (in particular the adjacent buildings) this constrains the development proposals in terms of the layout, positioning and orientation of the proposed development.

Subsequently, these constraints will impact on the feasibility of certain renewable technologies (as discussed in Section 4 of this report).

Access and egress for the proposed development will be provided off Crescent Road which le ads from Godstone Road.

<u>3</u> <u>SAP 2012 and Building Regulations (2013)</u>

The Standard Assessment Procedure (SAP) 2012 is the UK Government methodology for assessing and calculating the energy performance of dwellings.

The SAP calculation takes into account a range of factors that contribute to energy efficiency, including:

- Materials used for the construction of the dwelling and the thermal insulation of building fabric (u-values1)
- Ventilation of the dwelling
- Efficiency and control of heating systems
- Fuel used to provide space heating,
- Lighting
- Heat recovery systems
- Renewable technologies

Approved Document Part L of current Building Regulations (2013) addresses the conservation of fuel and power. Part L is divided into four separate documents:

- Part L1A Newly Constructed Dwellings
- Part L1B Existing Dwellings
- Part L2A Newly Constructed Non Dwellings
- Part L2B Existing Non Dwellings

Part L1B sets out the minimum energy efficiency requirements for **new dwellings** and is based on the SAP methodology.

To comply with Part L1B, the SAP calculation should demonstrate how the dwellings will either meet or achieve a percentage reduction in the Dwelling Emission Rate (DER) under the required Target Emission Rate (TER).

¹ U-values (Thermal Transmittance) - the measure of the overall rate of heat transfer by all mechanisms under standard conditions, through a particular section of a construction. Lower u-values mean better thermal insulation

4 Baseline Scenario (Part L1A Compliance)

SAP modelling has been used to calculate the Building Regulations compliance threshold for the whole building. The Target Emission Rate forms the baseline from which any CO2 emissions reductions can be measured. Simply complying with the minimum standards for building fabric and services would not usually be sufficient to ensure a 'pass' as the limiting values are designed to allow a degree of flexibility in achieving the main CO2 limiting criterion. A sample of units has been modelled in full with numbers of each type and orientation being approximately proportionally representative of the whole.

Table 1: Baseline Area Weighted Average CO2 Results

	Calculation
Target Emission Rate (kg CO2/m²/year)	17.06
Total Projected Baseline Emissions (kg CO2/year)	12,212

The Baseline Target emission rate for the dwellings assessed is shown to be on average 17.06 (kg CO2/m²/year).

The total Baseline CO2 emissions for the dwellings assessed on average is shown to be 12,212 kg/year and this is to be used as the basis for the assessment.

5 Be Lean Energy Efficiency Improvement Scenario

Be Lean Proposed Strategy

- Minimise demand
- Energy Efficient controls
- Generate energy

The Energy Hierarchy

Useful improvements can be made at all levels, but maximum benefits will be achieved if we focus first on minimising total energy requirements, then look at making better use of the energy we currently use, before thinking about how best to generate it.

In order to ensure that the dwellings exceed the minimum standards as set out in Part L1A, the following measures have been improved and are as proposed:

Table 2: Fabric Standards (u-values W/m²K)

	Part L1A Limiting Parameters	Notional Dwelling	Proposed Dwelling
Walls	0.30	0.18	0.2
Ground Floor	0.25	0.13	0.11
Roof	0.20	0.13	0.1 - 0.13
Windows	2.0	1.4	1.3
Air test	10	5	4
Ventilation	NA	Natural	Natural
Thermal Bridging	NA	0.05	ACD 0.05
Heating	88%	89% Gas Boiler	89.6% Gas Boiler
Heating controls	NA	Time and temp zone, weather comp	Time and temp zone, delayed start thermostat
Lights	75%	100%	100%
Thermal mass	NA	Medium	Low

- Insulation good levels of insulation with u-values exceeding Part L1A requirements (see Table 1)
- Thermal Bridging Accredited Construction Details provide the continuity of insulation and therefore apply a significant improvement factor on the energy performance of a dwelling
- Ventilation design air permeability (DAP) of 4 m³/hm² (@50Pa) (noting that a DAP of 10 m³/hm² (@50Pa) or lower is the Part L1A minimum standard)
- Heating and Controls 89.6% efficient ErP class Gas Combi Boiler with time and temperature zone control and a delayed start thermostat
- Lighting the design of the dwelling allows for natural daylight which will reduce the energy use from internal lighting. All internal lighting will be low energy

The above specification has been incorporated into the baseline SAP calculation; the results are summarised in Table 3 (with the DER worksheet provided in Appendix B).

Table 3: Be Lean Energy Efficient Area Weighted Average

	Be Lean Results
Dwelling Emission Rate (DER) (kg CO2/m²/year)	14.78
Target Emission Rate (TER) (kg CO2/m²/year)	17.06
DER/TER Variance	-13.32%
Total TER Baseline CO2 Emissions (kg/year)	12,212
Total DER Baseline CO2 Emissions (kg/year)	10,614

The Be Lean dwelling emission rate CO2 emissions are shown to be on average 14.78 (kg CO2/m²/year).

The total Be Lean CO2 emissions for all dwellings are shown to be in total 10,614kg/year.

Based on the Be Lean calculations, a 13.32% reduction in CO2 emissions can feasibly be achieved solely through improving the fabrics elements, air tightness.

6 Renewable Technology Review

As previously detailed, in order to meet the requirements of CSP 14 of the Core Strategy, the proposed dwellings will aim to achieve a 10% saving in CO2 emissions through the provision of on-site renewable technologies were feasible.

The baseline TER calculation indicates that the total CO2 emissions are 12,212 kg/year. Therefore, to achieve an overall 10% saving in CO2 emissions, we have conducted a renewable technology review below to assess the feasibility of certain renewable measures to achieve the council's target.

RENEWABLE TECHNOLOGIES

The Carbon Trust defines renewable energy as 'energy that occurs naturally and repeatedly in the environment. Therefore, it does not release any net greenhouse gases into the atmosphere'.

There are a range of renewable technologies - some which generate electricity (such as photovoltaic (PV) panels, wind turbines), some which generate heat (such as ground source heat pumps, solar thermal panels for water heating), and some which generate both electricity and heat (Micro Combined Heat and Power). All can afford different benefits in reducing CO2 emissions from a dwelling. However, their feasibility depends on a number of factors including:

- Orientation
- Space (inside and outside of the dwelling)
- Surrounding topography
- Wind speed (for wind turbines)

In determining the most feasible renewable technologies for the dwelling, the following have been reviewed:

- Wind turbines
- Ground Source Heat Pumps
- Air Source Heat Pumps
- Biomass
- Micro Combined Heat and Power
- Photovoltaic Panels
- Solar water heating

WIND TURBINES

Wind turbines are used to produce electricity. They can be either pole mounted (in a suitably exposed position) or building mounted; building mounted systems need a suitable wind resource, and subsequently both a structural survey and planning permission.

The immediate surrounding area is comprised mainly by residential dwellings and the topography of the site is also significantly uneven. As previously noted, the proposed development is situated in close proximity to other existing dwellings, wind turbines will also cause noise issues to the neighbouring properties within this development and are known to be visually unsightly.

As such, wind turbines are not considered to be a suitable or feasible renewable technology for this particular development.

GROUND SOURCE HEAT PUMP (GSHP)

GSHPs use naturally occurring underground low-level heat in areas with appropriate geological features.

Heat is transferred from the ground by either extracting and discharging (re-charging) water from/to the ground directly (open loop) or circulating water through pipes buried within the ground, (closed loop). The water is passed through a heat pump in order to transfer the heat from this water into a higher temperature water circuit used for heating purposes. The loop can be fitted horizontally (laid in a shallow trench) or vertically (in a borehole).

It is important to note that GSHPs require electricity to drive the pump and is therefore not considered a completely 'renewable' technology.

For a GSHP to be installed, there needs to be suitable outdoor space for digging a trench or borehole (and the associated digging machinery) to support the ground loop.

Based on the proposed site layout plan, there would potentially be enough space for the installation of either a horizontal or vertical GSHP system. However, such a system may require a re-working of scheme and layout in order to accommodate plant rooms and infrastructure. The need for in depth design analysis to assess geology and thermal dynamics would be costly and not guarantee feasibility. Scheme success is also highly dependent on expertise and design. System efficiencies degrade over the heating season. Other technologies are available and provide more immediate, straight forward and certain benefits.

As such a GSHP is deemed feasible for consideration in this development, however other technologies would be more suitable.

AIR SOURCE HEAT PUMP (ASHP)

ASHP systems absorbs heat from outside air at a low temperature into a fluid which is then passed through a compressor where its temperature is increased. There are two main types of ASHP systems:

- Air to Water distributes heat through the wet central heating
- Air to Air produces warm air which is circulated by fans

Like GSHPs, ASHPs require electricity to drive the pump and therefore is not a completely 'renewable' system.

For an ASHP system to be installed, there needs to be ample outdoor space for the external condensing unit; these units can also be noisy and blow out colder air to the neighbouring environment.

The plans indicate that there is potentially enough private space for the external condensing unit to the rear of the dwellings. However this would need to be checked with an ASHP installer.

An air source heat pump both external and inside does require a significant amount of space and this would need to be design into the development with a possible reworking of the scheme design. Space would need to be made for a hot water cylinder possibly to the first floor, which is fed from the ASHP. An air source heat pump does make some noise when operating, as both a fan and a compressor will be in motion, however new technologies are being developed to overcome this noise issue.

As such ASHPs are feasible for this development, however an ASHP installer should also review the feasibility of the system.

BIOMASS

Biomass systems burn wood pellets, chips or logs to provide heat in a single room, or to power central heating and hot water boilers.

There needs to be ample space available for both the boiler and the storage of fuel. There will also be regular deliveries of fuel and therefore adequate site access is required.

The biomass boiler system would require a substantial amount of space for large boiler plant plus storage of the wood chip fuel. The transport and delivery of fuel would also have to be considered in terms of impacts to site layout and impact on surroundings. Air quality is also a concern with biomass and the proximity of boiler flues between properties would be an issue and could result in very high outlets. Even with design to mitigate immediate local impact, damaging particulates would be released and cause 'downstream impacts'. There are supply chain drawbacks in terms of security of supply, transport CO2 emissions quality and provenance.

Therefore, biomass is deemed unsuitable for this development.

COMBINED HEAT AND POWER (CHP)

CHP is effectively an on-site small power plant providing both electrical power and thermal heat energy. It is an energy efficiency and low carbon measure rather than a renewable energy technology. A CHP system operates by burning a primary fuel (normally natural gas) by use of either a reciprocating engine or turbine, which in turn drives an alternator to generate electrical power. The heat emitted by the engine and exhaust gases is recovered and used to heat the building or to provide hot water.

The viability of CHP is dependent upon the building base load requirements for both heat and power. Buildings with high heat demands and constant power demands lend themselves to CHP. It is important that the unit is not oversized as this will lead to inefficient operation. Excess generated electricity can be exported to the grid when circumstances allow. The heat generated during this process is supplied to an appropriately matched heat demand that would otherwise be met by a conventional boiler. CHP systems are highly efficient, making use of the heat which would otherwise be wasted when generating electrical or mechanical power. This allows heat requirements to be met that would otherwise require additional fuel to be burnt.

Given there will not be a significant hot water demand at the development, it would not be justified to operate the CHP all year all round at this development. The commercial viability of this type of system therefore would not be suitable for this particular development.

Be Clean - DISTRICT HEATING

District Heating systems provide multiple buildings or dwellings with heat and hot water from a central boiler house, or 'energy centre'. The system can provide heating or cooling which is transferred from the energy centre through a network of highly insulated pipes carrying the heated water to each dwelling.

SOLAR PHOTOVOLTAIC (PV)

Solar PV cells (which are mounted together in panels or tiles on the roof) convert sunlight into electricity. The cells are made from layers of semiconducting material; when the light shines on the cell, an electric field is created across the layers. Although PV cells are most effective in bright sunlight, they can still generate electricity on a cloudy day. The power of a PV cell is measured in kilowatts peak (kWp). Each PV panel produces 0.25Watts to 0.35Watts depending on the manufacture.

In general, PV cells should be installed so that they are orientated in a southerly direction (to face between south-east and south-west), in an unshaded area. The site plan shows that PV on a horizontal angle to the rear flat roof is feasible for all dwellings.

Based on the proposed layout of the dwellings, and that there is no significant over-shading, PV is considered a feasible solution in contributing to the saving in CO2 emissions from the dwellings.

SOLAR HOT WATER

Solar hot water systems absorb energy from the sun and transfer this energy using heat exchangers to heat water. Systems should be roof mounted and oriented to face between a south-east and south-west direction.

There are three main types of solar heating (as defined by the Carbon Trust):

- Flat Plate Collectors a sheet of black metal that absorbs the sun's energy encases the collector system. Water is fed through the system in pipes which conduct the heat to the water
- Evacuated Tubes a series of parallel glass heat tubes grouped together, with each tube containing an absorber tube. Sunlight passes through the outer glass tube to heat the absorber tube which in doing so, the heat is transferred to water flowing through the tube
- Solar Matting a range of extruded hollow sections of flexible black material that can be used for solar collection. Water passes through the hollow tubes absorbing the heat from the sun

Based on the proposed layout of the dwellings, and that there is no significant over-shading, Solar Thermal would be a feasible solution in contributing to a saving in CO2 emissions from the dwellings. Solar PV provides a greater reduction in CO2 emissions compared to Solar Thermal based on the current SAP 2012.

Renewable Technology Summary

The renewable technology review indicates that the most feasible solution to achieve the 10% reduction in CO2 emissions from the dwellings (when compared with the baseline scenario) would be either the incorporation of an Air Source Heat Pump, Solar PV or solar thermal. All of these solutions would work, given the proposed layout of the dwellings and that there is no significant overshading.

For the purpose of showing a further reduction in CO2 via a renewable technology over Part L1a 2013 using SAP 2012, we have used Solar PV as the most suitable technology for this development.

The calculations to demonstrate how Solar PV can achieve the required 10% saving in CO2 emissions (when compared with the baseline scenario) are provided in Section 7 and Appendix C of this report.

7 <u>Be Green Renewable Technology Scenario</u>

In order to demonstrate how the dwellings can meet (or exceed) a 10% saving in CO2 emissions through the incorporation of on-site renewable energy, the baseline TER SAP calculation (as detailed in Section 4 and Appendix A of this report) has been re-run with Solar PV as the most feasible renewable energy solution.

For the purpose of this report, an average 0.3kWp PV system per dwelling has been incorporated, which equates to an overall 3.3kWp system across the whole development (at a 30° angle, facing south), noting that a 0.25kWp system is the smallest sized system. The results are summarised inTable 4 (with the baseline DER worksheet provided in Appendix C).

Table 4: SAP Calculation Results – Be Green – Solar PV Scenario

	Be Green Results
Dwelling Emission Rate (DER) (kg CO2/m²/year)	12.75
Target Emission Rate (TER) (kg CO2/m²/year)	17.06
DER/TER Variance	-25.23%
Total TER Baseline CO2 Emissions (kg/year)	12,212
Total DER Baseline CO2 Emissions (kg/year)	9,135

A comparison of the baseline calculation results, the energy efficiency scenario results and the results of the calculation with Solar PV included is shown in Table 5 below.

Table 5: Comparison of Calculations (Baseline, Be Lean and Be Green)

	Baseline Calculation	Be Lean Calculation	Be Green Calculation
Dwelling Emission Rate (DER) (kg CO2/m ² /year)	7.06	14.78	12.75
Target Emission Rate (TER) (kg CO2/m ² /year)	17.06	17.06	17.06
DER/TER Variance	0.00%	-13.32%	-25.23%
Total DER Baseline CO2 Emissions (kg/year)	12,212	12,212	12,212
Total TER Baseline CO2 Emissions (kg/year)	12,212	10,614	9,135

As required by the local council a minimum 10% saving in CO2 emissions is to be provided through energy efficient measures and through renewable technologies.

By including a 3.3kWp Solar PV System across the whole development, the total CO2 emissions are shown to be 9,135 Kg/ year.

This results in a 25.23% reduction in CO2 emissions Kg/year and therefore exceeds the requirement for a 10% reduction in CO2.

Based on the above, the dwellings can therefore feasibly achieve the targets set out in the Core Strategy.

8 Conclusion

There are proposals for the construction of 4 residential terrace houses at 35 Crescent Road, Caterham, CR3 6LE.

Under the Tandridge Council Core Strategy Policy CSP 14, the proposed dwellings will aim to achieve a minimum 10% saving in CO2 emissions through the provision of renewable technologies.

Given the scale and nature of the site (in particular the adjacent buildings), this constrains the development proposals in terms of the layout, positioning and orientation of the proposed development. Subsequently, these constraints will impact on the feasibility of certain renewable technologies.

A review of renewable technologies indicates that solar PV or an ASHP would be the most feasible solutions to meet the Core Strategy requirements, Solar PV has been used for the basis of the assessment. This would be combined with a high standard of energy efficient measures below.

The following Be Green has been used in the Energy Statement

• 3.3kWp Solar PV System (facing south between 30 – 45-degree angle)

This would be combined with the following Be Lean energy efficient measures

- Low fabric u-values
- High efficient heating system and controls
- High air tightness (air test of 4)

SAP 2012 has used to calculate both a baseline scenario (to meet Building Regulation requirements), a scenario with energy efficient measures and a scenario with Solar PV.

Through the incorporation of a 3.3kWp Solar PV system, this results in a 25.23% reduction in CO2 emissions and therefore exceeds the requirement for a 10% reduction in CO2 emissions.

Appendices

Appendix A TER Worksheet - Baseline Scenario

Property Reference	EE			Issued on Date	01/03/2024			
Assessment	F1 - EE							
Reference								
Property	35, Crescent Road, Cater	ham, CR3 6LE						
SAP Rating	85 B	DER	15.26	TER	17.95			
Environmental		88 B	% DER <ter< th=""><th></th><th colspan="4">14.96</th></ter<>		14.96			
CO ₂ Emissions (t/ye	ear)	1.04	DFEE	39.39	TFEE	48.98		
General Requireme	ents Compliance	Pass	% DFEE <tfe< th=""><th>E</th><th colspan="4">19.59</th></tfe<>	E	19.59			
Assessor Details	Mr. Peter Kinsella, Base Ener peter@baseenergy.co.uk	gy Services Ltd	, Tel: 0151 93	3 0328,	Assessor ID	L770-0002		
Client								

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COMPLIANCE REPORT - Approved	Document L1A, 2013 Edition, England							
DWELLING AS DESIGNED								
End of terrace dwelling, total floor area 117 $\ensuremath{\mathtt{m}}^2$								
This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.								
la TER and DER Fuel for main heating:Mains gas Fuel factor:1.00 (mains gas)								
Dwelling Carbon Dioxide Emission Rate (DE	K) 17.95 kgCO□/m² ER) 15.26 kgCO□/m²OK							
buching carbon brokic Emission actor (DER) 19755 Ageodym ok 1b TFEE and DFEE Target Fabric Energy Efficiency (TFEE) 49.0 kWh/m ² /yr Dublice Energy Efficiency (TFEE) 20.4 kWh/m ² /yr								
2 Fabric II-values								
Element Average External wall 0.20 (max. 0.30) Party wall 0.00 (max. 0.20)	Highest 0.20 (max. 0.70) OK - OK							
Floor 0.11 (max. 0.25)	0.11 (max. 0.70) OK							
Roof (no roof) Openings 1.30 (max. 2.00)	1.30 (max. 3.30) OK							
2a Thermal bridging Thermal bridging calculated from linear	thermal transmittances for each junction							
3 Air permeability Air permeability at 50 pascals: Maximum	4.00 (design value) 10.0	OK						
4 Heating efficiency Main heating system: Data from database Vaillant ecoTEC exclusive 843 VUW 436/5- Combi boiler Efficiency: 89.6% SEDBUK2009 Minimum: 88.0%	4 Heating efficiency Main heating system: Boiler system with radiators or underfloor - Mains gas Data from database Vaillant ecoTEC exclusive 843 VUW 436/5-7 (H-GB) Combi boiler Efficiency: 89.6% SEDBUK2009 Mainware 40.0%							
Secondary heating system:	None							
5 Cylinder insulation Hot water storage	No cylinder							
6 Controls Space heating controls:	Time and temperature zone control	OK						
Hot water controls:	No cylinder							
Boiler interlock	Yes	OK						
7 Low energy lights Percentage of fixed lights with low-ener Minimum	gy fittings:100% 75%	OK						
8 Mechanical ventilation Not applicable								
9 Summertime temperature Overheating risk (Thames Valley):	Slight	OK						
Based on: Overshading: Average								
Windows facing North:	2.86 m², No overhang							
Windows facing West:	11.55 m², No overhang							
Blinds/curtains:	None							
10 Key features Party wall U-value Exposed floor U-value	0.00 W/m²K 0.11 W/m²K							

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions										
		Area	Storey	height			Volume			
		(m2)		(m)			(m3)			
Ground floor		77.0000 (1b)	x	2.4000	(2b)	=	184.8000	(1b) - (3b)		
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	77.0000							(4)		
Dwelling volume		(3a)+(3b))+(3c)+(3	d)+(3e).	(3n)	=	184.8000	(5)		

2. Ventilation rate

					main heating		secondary heating		other		total	r	n3 per hour	
Number of chimne	eys				0	+	0	+	0	=	0	* 40 =	0.0000	(6a)
Number of open flues					0	+	0	+	0	=	0	* 20 =	0.0000	(6b)
Number of passive vents										0	* 10 =	30,0000	(/a) (7b)	
Number of fluele	ve vents see dae fin										0	* 40 =	0 0000	(7c)
Number of fidere	.55 gus III										0	10	0.0000	(, 0)
											Ai	r change	es per hour	
Infiltration due	e to chimne	eys, flues a	and fans	= (6a)+(6b)+(7a)+(7b)+((7c) =				30	.0000 /	(5) =	0.1623	(8)
Pressure test													Yes	
Measured/design	AP50												4.0000	
Infiltration rat	ie												0.3623	(18)
Number of sides	sheltered												2	(19)
Shelter factor									(20) = 1	- [0.	075 x (1	9)] =	0.8500	(20)
Infiltration rat	e adjusted	d to include	shelter fa	ctor						(21) =	(18) x (2	20) =	0.3080	(21)
	Jan	Feb	Mar	Apr	Mav	สมภ	Jul	Aug	Sep	0ct	+	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.800	0 3.8000	3.70	00 4.000	0 4.3	3000	4.5000	4.7000	(22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.950	0 0.9500	0.92	50 1.000	0 1.0	0750	1.1250	1.1750	(22a)
Adj infilt rate														
	0.3927	0.3850	0.3773	0.3388	0.3311	0.292	6 0.2926	0.28	49 0.308	0.0	3311	0.3465	0.3619	(22b)
Effective ac	0.5771	0.5741	0.5712	0.5574	0.5548	0.542	8 0.5428	0.54	06 0.547	4 0.5	5548	0.5600	0.5655	(25)

Flement Cross Openings Natārea II-valus à v II K-valus à	x K J/K
Dicasono di dicaso de la contrada de	J/K
m2 m2 m2 W/m2K W/K kJ/m2K	
Window (Uw = 1.30) 14.4100 1.2357 17.8070	(27)
Heat Loss Floor 1 77.0000 0.1100 8.4700	(28b)
External Wall 1 50.6500 14.4100 36.2400 0.2000 7.2480	(29a)
Total net area of external elements Aum(A, m2) 127.6500	(31)
Fabric heat loss, $W/K = Sum (A \times U)$ (26)(30) + (32) = 33.5250	(33)
Party Wall 1 53.0000 0.0000 0.0000	(32)
-	
Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K 100.	000 (35)
Thermal bridges (Sum(L x Psi) calculated using Appendix K) 12.	215 (36)
Total fabric heat loss (33) + (36) = 45.	465 (37)
Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5)	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	
(38)m 35.1939 35.0113 34.8323 33.9917 33.8345 33.1023 33.1023 32.9668 33.3843 33.8345 34.1526 34.	852 (38)
Heat transfer coeff	
80.8404 80.6578 80.4789 79.6383 79.4810 78.7489 78.7489 78.6133 79.0309 79.4810 79.7992 80.	318 (39)
Average = Sum(39)m / 12 = 79.	375 (39)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	
HLP 1.0499 1.0475 1.0452 1.0343 1.0322 1.0227 1.0227 1.0210 1.0264 1.0322 1.0364 1.	407 (40)
HLP (average) 1.	343 (40)
Days in month	
31 28 31 30 31 30 31 31 30 31 30	31 (41)

4. Water heating energy requirements (kWh/year)													
Assumed occupa Average daily	ncy hot water u	se (litres/	day)									2.4035 (42 91.2825 (43	2) 3)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate	er use												
	100.4108	96.7595	93.1082	89.4569	85.8056	82.1543	82.1543	85.8056	89.4569	93.1082	96.7595	100.4108 (44	1)
Energy conte	148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078 (45	i)
Energy content	(annual)									Total = Su	um (45) m =	1436.2293 (45)
Distribution 1	.oss (46)m	$= 0.15 \times (4)$	5) m										
	22.3359	19.5352	20.1585	17.5747	16.8633	14.5518	13.4844	15.4735	15.6583	18.2482	19.9194	21.6312 (46	5)
Water storage	loss:												
Total storage	loss												
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (56	S)
If cylinder co	ntains dedi	cated solar	storage										
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (57	7)
Combi loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (61	L)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Total	heat req	uired for	water heati	ng calculate	ed for each	month						100 5050	
		148.9063	130.2344	134.3902 11	7.1646 112	.4223	97.0119	89.895/	103.156/	104.388/	121.6550	132./959	144.2078 (62)
Solar	input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63)
									Solar inpu	t (sum of n	uonths) = Su	um (63) m =	0.0000 (63)
FGHRS		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Output	from w/l	h											
		148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078 (64)
									Total p	er year (kW	h/year) = S	um(64)m =	1436.2293 (64)
Heat g	ains from	n water he	ating, kWh/m	month									
5		49.5113	43.3029	44.6847	38.9572	37.3804	32.2564	29.8903	34.2996	34.7092	40.4503	44.1546	47.9491 (65)

5. Internal g	ains (see Ta	uble 5 and 5	5a)									
Metabolic gai	ns (Table 5)	, Watts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(66)m	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737 (66)
Lighting gain	s (calculate	ed in Append	dix L, equat	ion L9 or L	9a), also s	ee Table 5						
	19.2861	17.1297	13.9308	10.5465	7.8837	6.6557	7.1917	9.3481	12.5470	15.9313	18.5942	19.8221 (67)
Appliances ga	ins (calcula	ated in App	endix L, equ	ation L13 d	or L13a), a	lso see Tab	le 5					
	213.0566	215.2674	209.6961 19	7.8355 182	2.8636 168.	7921 159.3	915	157.1806	162.7519	174.6125	189.5845	203.6559 (68)
Cooking gains	(calculated	d in Append:	ix L, equati	on L15 or L	15a), also	see Table 5						
	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. e	vaporation (negative va	alues) (Tabl	e 5)								
	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390 (71)
Water heating	gains (Tabl	.e 5)										
	66.5475	64.4389	60.0601	54.1073	50.2425	44.8006	40.1752	46.1016	48.2073	54.3687	61.3259	64.4477 (72)
Total interna	l gains											
	360.9423	358.8882	345.7392	324.5414	303.0418	282.3005	268.8105	274.6824	285.5583	306.9646	331.5566	349.9779 (73)

6. Solar gains

[Jan]	Jan]		Area m2		Solar flux g Table 6a Specific data W/m2 or Table 6b		g fic data Table 6b	FF Specific data or Table 6c		Access factor Table 6d		Gains W	
North West			2.8600 11.5500		10.6334 19.6403		0.6300 0.6300	0 0	.7000 .7000	0.770	00	9.2941 69.3268	(74) (80)
Solar gains Total gains	78.6209 439.5632	153.3795 512.2677	253.5247 599.2639	374.2119 698.7534	464.5036 767.5454	478.5617 760.8623	454.3230 723.1335	385.9741 660.6565	296.0453 581.6036	182.0649 489.0295	97.9079 429.4645	64.7590 414.7369	(83) (84)

7. Mean inte	rnal temperat	ure (heatin	g season)										
Temperature	during heatin	g periods i	n the livin	g area from	Table 9, Th	nl (C)						21.0000	(85)
Utilisation	factor for ga	ins for liv	ing area, n	il,m (see T	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	26.4582	26.5181	26.5770	26.8575	26.9107	27.1609	27.1609	27.2077	27.0640	26.9107	26.8034	26.6921	
alpha	2.7639	2.7679	2.7718	2.7905	2.7940	2.8107	2.8107	2.8138	2.8043	2.7940	2.7869	2.7795	
util living	area												
2	0.9692	0.9524	0.9165	0.8408	0.7224	0.5737	0.4456	0.4968	0.7130	0.8909	0.9552	0.9735	(86)
MIT	18.7790	19.0498	19.5128	20.0909	20.5532	20.8361	20.9410	20.9189	20.6833	20.0544	19.3117	18.7271	(87)
Th 2	20.0420	20.0439	20.0459	20.0549	20.0566	20.0644	20.0644	20.0659	20.0614	20.0566	20.0531	20.0496	(88)
util rest of	house												
	0.9647	0.9455	0.9042	0.8172	0.6811	0.5097	0.3617	0.4113	0.6555	0.8693	0.9476	0.9695	(89)
MIT 2	17.0547	17.4468	18.1124	18.9314	19.5557	19.9133	20.0245	20.0075	19.7422	18.8998	17.8361	16.9839	(90)
Living area	fraction								ILA =	Living area	/ (4) =	0.3519	(9I)
MIT	17.6616	18.0109	18.6053	19.3395	19.9068	20.2381	20.3471	20.3282	20.0734	19.3061	18.3555	17.5974	(92)
Temperature	adjustment											-0.1500	
adjusted MIT	17.5116	17.8609	18.4553	19.1895	19.7568	20.0881	20.1971	20.1782	19.9234	19.1561	18.2055	17.4474	(93)

8.	Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9476	0.9240	0.8780	0.7917	0.6667	0.5114	0.3741	0.4222	0.6460	0.8434	0.9268	0.9540	(94)
Useful gains	416.5107	473.3448	526.1675	553.2188	511.6888	389.1096	270.5394	278.9220	375.7181	412.4388	398.0466	395.6490	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	1068.0301	1045.4019	962.1469	819.4379	640.3603	432.1805	283.2639	297.0200	460.2276	680.0485	886.2061	1061.5389	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	484.7305	384.4224	324.3686	191.6778	95.7316	0.0000	0.0000	0.0000	0.0000	199.1016	351.4748	495.4221	(98)
Space heating												2526.9294	(98)
Space heating	per m2									(98)	/ (4) =	32.8173 ((99)

8c. Space cooling requirement

Not applicable

9a. Energy requirements - Individual heating systems, including micro-CHP

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Fraction of s Fraction of s Efficiency of Efficiency of Space heating	pace heat fro pace heat fro main space secondary/s requirement	om secondar om main sys heating sys upplementa	ry/supplemer stem(s) stem 1 (in % ry heating s	ntary system 3) System, %	n (Table 11)							0.0000 1.0000 90.5000 0.0000 2792.1872	(201) (202) (206) (208) (211)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	requirement 484.7305	384.4224	324.3686	191.6778	95.7316	0.0000	0.0000	0.0000	0.0000	199.1016	351,4748	495.4221	(98)
Space heating	efficiency	(main heati	ing system 1	.)	00 5000	0.0000	0 0000	0.0000	0 0000	00 5000	00 5000	00 5000	(210)
Space heating	fuel (main)	90.5000 heating svs	90.5000 stem)	90.5000	90.5000	0.0000	0.0000	0.0000	0.0000	90.5000	90.5000	90.5000	(210)
	535.6138	424.7761	358.4184	211.7986	105.7808	0.0000	0.0000	0.0000	0.0000	220.0018	388.3700	547.4278	(211)
Water heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating													
Water heating	requirement 148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078	(64)
Efficiency of (217)m	water heate 88.8310	r 88.7053	88.4289	87.8358	86.7538	83.8000	83.8000	83.8000	83.8000	87.8365	88.5584	83.8000 88.8976	(216) (217)
Fuel for wate	er heating, k 167.6288	Wh/month 146.8169	151.9755	133.3905	129.5877	115.7659	107.2742	123.0987	124.5689	138.5017	149.9529	162.2179	(219)
Water heating Annual totals	fuel used kWh/year											1650.7794	(219)
Space heating	fuel - main	system										2792.1872	(211)
Space heating	fuel - seco	ndary										0.0000	(215)
Electricity f central he main heati	or pumps and ating pump ng flue fan	fans:										30.0000 45.0000	(230c) (230e)
Total electri	city for the	above, kWh	n/year									75.0000	(231)
Total deliver	ed energy fo	(calculated r all uses	a in Appenai	LX L)								4858.5652	(232)
12a. Carbon d	ioxide emiss	ions - Indi	ividual heat	ing systems	including n	micro-CHP							
Space heating Space heating	- main syst - secondary	em 1						Energy kWh/year 2792.1872 0.0000	Emiss	ion factor kg CO2/kWh 0.2160 0.0000	1	Emissions kg CO2/year 603.1124 0.0000	(261) (263)

	Flierdy	EMIISSION LACCOL		FULSSIOUS	
	kWh/year	kg CO2/kWh]	g CO2/year	
Space heating - main system 1	2792.1872	0.2160		603.1124	(261)
Space heating - secondary	0.0000	0.0000		0.0000	(263)
Water heating (other fuel)	1650.7794	0.2160		356.5683	(264)
Space and water heating				959.6808	(265)
Pumps and fans	75.0000	0.5190		38.9250	(267)
Energy for lighting	340.5986	0.5190		176.7707	(268)
Total CO2, kg/year				1175.3764	(272)
Dwelling Carbon Dioxide Emission Rate (DER)				15.2600	(273)
16 CO2 EMISSIONS ASSOCIATED WITH APPLIANCES AND COOKING AND SITE-WIDE ELECTRICITY (GENERATION TECHNOLOGIES				
DER				15.2600	ZC1
Total Floor Area			TFA	77.0000	
Assumed number of occupants			N	2.4035	
CO2 emission factor in Table 12 for electricity displaced from grid			EF	0.5190	
CO2 emissions from appliances, equation (L14)				16.3965	ZC2
CO2 emissions from cooking, equation (L16)				2.2946	ZC3
Total CO2 emissions				33.9511	ZC4
Residual CO2 emissions offset from biofuel CHP				0.0000	ZC5
Additional allowable electricity generation, kWh/m²/year				0.0000	ZC6
Resulting CO2 emissions offset from additional allowable electricity generation				0.0000	ZC7
Net CO2 emissions				33.9511	ZC8

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
-						
		Area	Sto	rey height		Volume
		(m2)		(m)		(m3)
Ground floor		77.0000 (1b)	х	2.4000 (2b)	=	184.8000 (1b) - (3b)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	77.0000					(4)
Dwelling volume		(3a)+(3b)+(3c)	+(3d)+(3e)(3n) =	184.8000 (5)

2. Ventilation rate

Number of chimne	ys				main heating 0	+	secondary heating 0	+	other 0 =	tota	1 m3 0 * 40 =	9 per hour 0.0000 (6a)
Number of open f	lues				0	+	0	+	0 =	(0 * 20 =	0.0000 (6b)
Number of intern	nittent fam no worte	ns									3 * 10 =	30.0000 (7a)
Number of fluele	ss gas fir	res								($0 \times 10 =$ 0 × 40 =	0.0000 (7b)
										;	Air changes	per hour
Infiltration due Pressure test Measured/design	to chimne AP50	eys, flues a	ind fans =	= (6a)+(6b)+	(7a)+(7b)+(7c) =				30.0000	/ (5) =	0.1623 (8) Yes 5.0000
Infiltration rat Number of sides	e sheltered											0.4123 (18) 2 (19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500 (20)
Infiltration rat	e adjusted	d to include	shelter fa	ctor					(21) = (18) x	(20) =	0.3505 (21)
		To b	M				T]		0	0	N	Dee
Wind speed	Jan 5 1000	Feb 5 0000	Mar 4 9000	Apr 4 4000	May 4 3000	3 8000	3 8000	Aug 3 7000	4 0000	4 3000	4 5000	4 7000 (22)
Wind factor Adi infilt rate	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750 (22a)
,	0.4469	0.4381	0.4293	0.3855	0.3768	0.3330	0.3330	0.3242	0.3505	0.3768	0.3943	0.4118 (22b)
Effective ac	0.5998	0.5960	0.5922	0.5743	0.5710	0.5554	0.5554	0.5526	0.5614	0.5710	0.5777	0.5848 (25)

3. Heat losses	and heat l	oss paramet	er										
Element				Gross	Openings	Net	tArea	U-value	АхU	K-	-value	АхК	
				m2	m2		m2	W/m2K	W/K	t 1	cJ/m2K	kJ/K	
TER Opening Tvg	be $(Uw = 1.$	40)				14	.4100	1.3258	19.1042				(27)
Heat Loss Floor	r 1	- /				77	.0000	0.1300	10.0100				(28b)
External Wall 1	1			50 6500	14 4100	36	2400	0 1800	6 5232				(29a)
Total net area	of externa	l elements :	Aum (A. m2)	00.0000	11.1100	127	6500	0.1000	0.0202				(31)
Tobai a beat la	W/V = 0		(III) (III)			127	(26) (201 (221 -	25 6274				(32)
rabiic neat ios	55, W/A - 5	uni (A X U)					(20)(30) + (32) -	55.6574				(33)
Thormal maga no	arameter (T	MD - Cm / T	ED) in kT/m	24								250 0000	(25)
Thermal hass po	arameter (r	Pir = Cin / 1	eted weine	LIL Namondiu VI								10.1070	(35)
Inermai bridges	s (Sum(L X	PSI) Calcul	ated using A	Appendix K)						(22)		12.10/0	(30)
Total fabric he	eat loss									(33)	+ (36) =	4/.8244	(37)
				0 00 /0									
Ventilation hea	at loss cal	culated mon	thiy (38)m	= 0.33 x (2)	5) m x (5)								
	Jan	Feb	Mar	Apr	мау	Jun	Jul	Aug	Sep	OCt	NOV	Dec	
(38)m	36.5811	36.3446	36.1128	35.0243	34.8206	33.8725	33.8725	33.6969	34.2377	34.8206	35.2326	35.6634	(38)
Heat transfer o	coeff												
	84.4054	84.1690	83.9372	82.8486	82.6450	81.6968	81.6968	81.5213	82.0620	82.6450	83.0570	83.4877	(39)
Average = Sum (3	39)m / 12 =											82.8477	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.0962	1.0931	1.0901	1.0760	1.0733	1.0610	1.0610	1.0587	1.0657	1.0733	1.0787	1.0843	(40)
HLP (average)												1.0759	(40)
Davs in month													(/
bayo in month	31	28	31	30	31	30	31	31	30	31	30	31	(41)
	51	20	51	50	51	50	51	51	50	51	50	51	(+ +)

4. Water heati	ng energy r	equirements	(kWh/year)										
Assumed occupa Average daily	ancy hot water u	se (litres/	day)									2.4035 91.2825	(42) (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate	er use												
	100.4108	96.7595	93.1082	89.4569	85.8056	82.1543	82.1543	85.8056	89.4569	93.1082	96.7595	100.4108	(44)
Energy conte	148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078	(45)
Energy content	: (annual)									Total = Su	1m (45) m =	1436.2293	(45)
Distribution 1	Loss (46)m	= 0.15 x (4	5)m										
	22.3359	19.5352	20.1585	17.5747	16.8633	14.5518	13.4844	15.4735	15.6583	18.2482	19.9194	21.6312	(46)
Water storage	loss:												
Total storage	loss												
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
If cylinder co	ntains dedi	cated solar	storage										
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(57)
Combi loss	50.9589	44.5359	47.4469	44.1157	43.7256	40.5144	41.8649	43.7256	44.1157	47.4469	47.7170	50.9589	(61)
Total heat rec	quired for w	ater heatin	g calculate	d for each n	month								

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63)
								Solar inpu	t (sum of m	onths) = Su	um (63) m =	0.0000 (63)
Output from w/	h											
-	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (64)
								Total pe	r year (kWh	/year) = Su	um (64) m =	1983.3557 (64)
Heat gains from	m water hea	ting, kWh/m	onth									
2	62.2511	54.4369	56.5465	49.9862	48.3118	42.3850	40.3566	45.2310	45.7382	52.3120	56.0839	60.6888 (65)

5. Internal gains (see Table 5 and 5a)

Metabolic gai	ns (Table 5)	, Watts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(66)m	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737 (66)
Lighting gain	s (calculate	ed in Append	dix L, equat	ion L9 or L	9a), also s	ee Table 5						
	19.2861	17.1297	13.9308	10.5465	7.8837	6.6557	7.1917	9.3481	12.5470	15.9313	18.5942	19.8221 (67)
Appliances ga	ins (calcula	ated in App	endix L, eq	ation L13	or L13a), a	lso see Tab	Le 5					
	213.0566	215.2674	209.6961 19	7.8355 182	2.8636 168.	7921 159.3	915	157.1806	162.7519	174.6125	189.5845	203.6559 (68)
Cooking gains	(calculated	i in Append:	ix L, equati	on L15 or L	15a), also	see Table 5						
	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. e	vaporation (negative va	alues) (Tabl	e 5)								
	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390 (71)
Water heating	gains (Tabl	Le 5)										
	83.6708	81.0073	76.0033	69.4252	64.9352	58.8681	54.2427	60.7943	63.5252	70.3118	77.8943	81.5710 (72)
Total interna	l gains											
	378.0656	375.4566	361.6824	339.8594	317.7346	296.3680	282.8780	289.3752	300.8763	322.9078	348.1250	367.1012 (73)

6. Solar gains

[Jan]		Area So m2		Solar flux g Table 6a Specific data W/m2 or Table 6b		FF Specific data or Table 6c		Access factor Table 6d		Gains W			
North West	:h :		2.8 11.5	500 500	10.6334 19.6403		0.6300 0.6300	0	.7000 .7000	0.770	00 00	9.2941 69.3268	(74) (80)
Solar gains Total gains	78.6209 456.6865	153.3795 528.8361	253.5247 615.2071	374.2119 714.0713	464.5036 782.2381	478.5617 774.9298	454.3230 737.2010	385.9741 675.3493	296.0453 596.9216	182.0649 504.9727	97.9079 446.0329	64.7590 431.8602	(83) (84)

7. Mean inter	nal temperat	ure (heatin	g season)									
Temperature d	uring heatin	g periods i	n the living	g area from	Table 9, Th	11 (C)						21.0000 (85)
Utilisation f	actor for ga	ins for liv	ing area, n	il,m (see T	able 9a)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	63.3516	63.5296	63.7050	64.5421	64.7011	65.4520	65.4520	65.5930	65.1607	64.7011	64.3802	64.0480
alpha	5.2234	5.2353	5.2470	5.3028	5.3134	5.3635	5.3635	5.3729	5.3440	5.3134	5.2920	5.2699
util living a	rea											
	0.9981	0.9956	0.9860	0.9460	0.8341	0.6457	0.4822	0.5445	0.8193	0.9747	0.9960	0.9986 (86)
MIT	19.8252	19.9787	20.2472	20.5958	20.8564	20.9722	20.9951	20.9910	20.9044	20.5456	20.1223	19.8009 (87)
Th 2	20.0040	20.0065	20.0089	20.0205	20.0227	20.0328	20.0328	20.0347	20.0289	20.0227	20.0183	20.0137 (88)
util rest of 3	house											
	0.9975	0.9941	0.9811	0.9271	0.7829	0.5601	0.3791	0.4358	0.7455	0.9624	0.9944	0.9981 (89)
MIT 2	18.4345	18.6602	19.0511	19.5510	19.8861	20.0150	20.0310	20.0311	19.9536	19.4923	18.8791	18.4060 (90)
Living area f	raction								fLA =	Living area	/ (4) =	0.3519 (91)
MIT	18.9239	19.1243	19.4721	19.9187	20.2276	20.3519	20.3703	20.3689	20.2882	19.8630	19.3166	18.8969 (92)
Temperature a	djustment											0.0000
adjusted MIT	18.9239	19.1243	19.4721	19.9187	20.2276	20.3519	20.3703	20.3689	20.2882	19.8630	19.3166	18.8969 (93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	Mav	Tun	.Tu]	Aug	Sen	Oct	Nov	Dec
Utilisation	0.9965	0.9922	0.9776	0.9248	0.7947	0.5894	0.4156	0.4743	0.7673	0.9598	0.9927	0.9974 (94)
Useful gains	455.0859	524.7147	601.4352	660.3774	621.6209	456.7176	306.3553	320.2879	458.0055	484.6641	442.7872	430.7182 (95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)
Heat loss rate	e W											
	1234.3396	1197.2420	1088.8385	912.8858	704.7628	469.9080	308.0247	323.5509	507.8192	765.5405	1014.6758	1227.0134 (97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000 (97a)
Space heating	kWh											
	579.7648	451.9383	362.6280	181.8060	61.8576	0.0000	0.0000	0.0000	0.0000	208.9721	411.7598	592.4436 (98)
Space heating												2851.1702 (98)
Space heating	per m2									(98) / (4) =	37.0282 (99)

8c. Space cooling requirement Not applicable

9a. Energy requirements - Individual heating systems, including micro-CHP Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s)

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r19

Design SAP

elmhurst energy

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Efficiency of Efficiency of Space heating	main space f secondary/su requirement	neating sys upplementa	stem 1 (in s ry heating s	%) system, %								93.4000 (206) 0.0000 (208) 3052.6448 (211)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Space heating	requirement											
	579.7648	451.9383	362.6280	181.8060	61.8576	0.0000	0.0000	0.0000	0.0000	208.9721	411.7598	592.4436 (98)
Space heating	efficiency ((main heati	ing system 1	.)								
	93.4000	93.4000	93.4000	93.4000	93.4000	0.0000	0.0000	0.0000	0.0000	93.4000	93.4000	93.4000 (210)
Space heating	fuel (main h	eating sys	stem)	104 (501	66 0007	0 0000	0 0000	0 0000	0 0000	000 7000	440.05.00	(24 2070 (011)
Watan beating	620.7332	483.8/40	388.2527	194.6531	66.2287	0.0000	0.0000	0.0000	0.0000	223./388	440.8563	634.30/9 (211)
water neating	1 equirement	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000 (215)
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (213)
Water heating												
Water heating	requirement											
	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (64)
Efficiency of	water heater	<u>.</u>										80.3000 (216)
(217)m	87.5762	87.3366	86.7557	85.3533	82.9290	80.3000	80.3000	80.3000	80.3000	85.5852	87.0625	87.6676 (217)
Fuel for wate	r heating, k	Wh/month										
	228.2187	200.1111	209.5968	188.9561	188.2911	171.2656	164.0855	182.9169	184.9370	197.5830	207.3372	222.6211 (219)
Water heating	fuel used											2345.9200 (219)
Annual totals	kWh/year											
Space heating	fuel - main	system										3052.6448 (211)
Space heating	fuel - secor	ndary										0.0000 (215)
Electricity fo		fana.										
control ho	ting numn	Lans.										20 0000 (000-
main heatir	a fluo fan											45 0000 (2300)
Total oloctri	ig ilue lan	aborro kWk	./									75 0000 (2308)
Floatrigity fo	r lighting (above, kwi	1/year d in Annond:	T)								240 5086 (222)
Total delivere	d energy for	call uses	a ili Appella.	LA L)								5814 1634 (238)
rotar activer.	a energy roi	u11 4000										001111001 (200)
12a. Carbon di	oxide emissi	lons - Indi	ividual heat	ing systems	including n	micro-CHP						
								_				

kg CO2/kWh	lag (002 / 110 a m	
	kg COZ/year	
0.2160	659.3713 ((261)
0.0000	0.0000 ((263)
0.2160	506.7187 ((264)
	1166.0900 ((265)
0.5190	38.9250	(267)
0.5190	176.7707 ((268)
	1381.7857 ((272)
	15.1440 ((272a)
	1.0000	
	2.2957 ((272b)
	0.5055 ((272c)
	17.9500	(273)
	0.2160 0.0000 0.2160 0.2160 0.5190 0.5190	kg C02/kWh kg C02/year 0.2160 659.3713 0.0000 0.0000 0.2160 506.7187 1166.0900 1166.0900 0.5190 176.7707 1381.7857 15.1440 1.0000 2.2957 0.5055 17.9500

Appendix B: DER Worksheet – Be Lean, With Energy Efficient Measures

Property Reference	EE			Issued on Date	01/03/2024		
Assessment	F1 - EE			Prop Type Ref			
Reference							
Property	35, Crescent Road, Cater	ham, CR3 6LE					
SAP Rating		85 B	DER	15.26	TER	17.95	
Environmental		88 B	% DER <ter< th=""><th></th><th>14.96</th><th></th></ter<>		14.96		
CO ₂ Emissions (t/ye	ear)	1.04	DFEE	39.39	TFEE	48.98	
General Requireme	ents Compliance	Pass	% DFEE <tfe< th=""><th>E</th><th>19.59</th><th>·</th></tfe<>	E	19.59	·	
Assessor Details	Mr. Peter Kinsella, Base Ener peter@baseenergy.co.uk	/r. Peter Kinsella, Base Energy Services Ltd, Tel: 0151 933 0328, eter@baseenergy.co.uk					
Client							

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COMP	LIANCE REPORT - Approved	i Document L1A, 2013 Edition, England								
DWELLING AS DESIGNED End of terrace dwelling, total floor area 77 $\rm m^2$										
End of terrace d	welling, total floor are	ea 77 m²								
This report cove It is not a comp	rs items included within lete report of regulation	n the SAP calculations. ons compliance.								
la TER and DER Fuel for main he Fuel factor:1.00	ating:Mains gas (mains gas)									
Dwelling Carbon	Oxide Emission Rate (TE Dioxide Emission Rate (D	R) 17.95 kgCOU/m² ER) 15.26 kgCOU/m²OK								
1b TFEE and DFEE Target Fabric En	ergy Efficiency (TFEE)4	9.0 kWh/m²/yr								
Dweiling Fabile	Energy Efficiency (DFEE)	55.4 KWII/III / YIOK								
Element External wall Party wall	Average 0.20 (max. 0.30) 0.00 (max. 0.20)	Highest 0.20 (max. 0.70) OK - OK								
Floor	0.11 (max. 0.25)	0.11 (max. 0.70) OK								
Roof Openings	(no roof) 1.30 (max. 2.00)	1.30 (max. 3.30) OK								
2a Thermal bridg Thermal bridging	ing calculated from linear	thermal transmittances for each junction								
3 Air permeabili Air permeability Maximum	ty at 50 pascals:	4.00 (design value) 10.0	OK							
4 Heating effici Main heating sys Data from databa Vaillant ecoTEC Combi boiler Efficiency: 89.6 Minimum: 88.0%	ency tem: se exclusive 843 VUW 436/5 % SEDBUK2009	Boiler system with radiators or underfloor - Mair -7 (H-GB) OK	ns gas							
Secondary heatin	g system:	None								
5 Cylinder insul Hot water storag	ation e	No cylinder								
6 Controls Space heating co	ntrols:	Time and temperature zone control	ОК							
Hot water contro	ls:	No cylinder								
Boiler interlock		Yes	OK							
7 Low energy lig Percentage of fi Minimum	hts xed lights with low-ener	rgy fittings:100% 75%	OK							
8 Mechanical ven Not applicable	tilation									
9 Summertime tem Overheating risk	perature (Thames Valley):	Slight	OK							
Overshading:		Average								
Windows facing N	orth:	2.86 m², No overhang								
Windows facing W	lest:	11.55 m², No overhang								
Air change rate: Blinds/curtains:		6.00 ach None								
10 Key features										
Party wall U-val Exposed floor U-	ue value	0.00 W/m ² K 0.11 W/m ² K								

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions								
		Area	Storey	height			Volume	
		(m2)		(m)			(m3)	
Ground floor		77.0000 (1b)	x	2.4000	(2b)	=	184.8000	(1b) - (3b)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	77.0000							(4)
Dwelling volume		(3a)+(3b))+(3c)+(3	d)+(3e).	(3n)	=	184.8000	(5)

2. Ventilation rate

					main heating		secondary heating		other		total	r	n3 per hour	
Number of chimne	eys				0	+	0	+	0	=	0	* 40 =	0.0000	(6a)
Number of open f	lues				0	+	0	+	0	=	0	* 20 =	0.0000	(6b)
Number of intern	nittent ia	ns									0	* 10 =	30,0000	(/a) (7b)
Number of fluele	ve vents see dae fin										0	* 40 =	0 0000	(7c)
Number of fidere	.55 945 111										0	10	0.0000	(, 0)
											Ai	r change	es per hour	
Infiltration due	e to chimne	eys, flues a	and fans	= (6a)+(6b)+(7a)+(7b)+((7c) =				30	.0000 /	(5) =	0.1623	(8)
Pressure test													Yes	
Measured/design	AP50												4.0000	
Infiltration rat	ie												0.3623	(18)
Number of sides	sheltered												2	(19)
Shelter factor									(20) = 1	- [0.	075 x (1	9)] =	0.8500	(20)
Infiltration rat	e adjusted	d to include	shelter fa	ctor						(21) =	(18) x (2	20) =	0.3080	(21)
	Jan	Feb	Mar	Apr	Mav	สมภ	Jul	Aug	Sep	0ct	+	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.800	0 3.8000	3.70	00 4.000	0 4.3	3000	4.5000	4.7000	(22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.950	0 0.9500	0.92	50 1.000	0 1.0	0750	1.1250	1.1750	(22a)
Adj infilt rate														
	0.3927	0.3850	0.3773	0.3388	0.3311	0.292	6 0.2926	0.28	49 0.308	0.0	3311	0.3465	0.3619	(22b)
Effective ac	0.5771	0.5741	0.5712	0.5574	0.5548	0.542	8 0.5428	0.54	06 0.547	4 0.5	5548	0.5600	0.5655	(25)

Flement Cross Openings Natārea II-valus à v II K-valus à	x K J/K
Dicasono di dicaso de la contrada de	J/K
m2 m2 m2 W/m2K W/K kJ/m2K	
Window (Uw = 1.30) 14.4100 1.2357 17.8070	(27)
Heat Loss Floor 1 77.0000 0.1100 8.4700	(28b)
External Wall 1 50.6500 14.4100 36.2400 0.2000 7.2480	(29a)
Total net area of external elements Aum(A, m2) 127.6500	(31)
Fabric heat loss, $W/K = Sum (A \times U)$ (26)(30) + (32) = 33.5250	(33)
Party Wall 1 53.0000 0.0000 0.0000	(32)
-	
Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K 100.	000 (35)
Thermal bridges (Sum(L x Psi) calculated using Appendix K) 12.	215 (36)
Total fabric heat loss (33) + (36) = 45.	465 (37)
Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5)	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	
(38)m 35.1939 35.0113 34.8323 33.9917 33.8345 33.1023 33.1023 32.9668 33.3843 33.8345 34.1526 34.	852 (38)
Heat transfer coeff	
80.8404 80.6578 80.4789 79.6383 79.4810 78.7489 78.7489 78.6133 79.0309 79.4810 79.7992 80.	318 (39)
Average = Sum(39)m / 12 = 79.	375 (39)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	
HLP 1.0499 1.0475 1.0452 1.0343 1.0322 1.0227 1.0227 1.0210 1.0264 1.0322 1.0364 1.	407 (40)
HLP (average) 1.	343 (40)
Days in month	
31 28 31 30 31 30 31 31 30 31 30	31 (41)

4. Water heati	ng energy r	equirements	(kWh/year)										
Assumed occupa Average daily	ncy hot water u	se (litres/	day)									2.4035 (42 91.2825 (43	2) 3)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate	er use												
	100.4108	96.7595	93.1082	89.4569	85.8056	82.1543	82.1543	85.8056	89.4569	93.1082	96.7595	100.4108 (44	1)
Energy conte	148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078 (45	i)
Energy content	(annual)									Total = Su	um (45) m =	1436.2293 (45)
Distribution 1	.oss (46)m	$= 0.15 \times (4)$	5)m										
	22.3359	19.5352	20.1585	17.5747	16.8633	14.5518	13.4844	15.4735	15.6583	18.2482	19.9194	21.6312 (46	5)
Water storage	loss:												
Total storage	loss												
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (56	S)
If cylinder co	ntains dedi	cated solar	storage										
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (57	7)
Combi loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (61	L)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Total	heat req	uired for	water heati	ng calculate	ed for each	month						100 5050	
		148.9063	130.2344	134.3902 11	7.1646 112	.4223	97.0119	89.895/	103.156/	104.388/	121.6550	132./959	144.2078 (62)
Solar	input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63)
									Solar inpu	t (sum of n	uonths) = Su	um (63) m =	0.0000 (63)
FGHRS		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Output	from w/l	h											
		148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078 (64)
									Total p	er year (kW	h/year) = S	um(64)m =	1436.2293 (64)
Heat g	ains from	n water he	ating, kWh/m	month									
5		49.5113	43.3029	44.6847	38.9572	37.3804	32.2564	29.8903	34.2996	34.7092	40.4503	44.1546	47.9491 (65)

5. Internal g	ains (see Ta	uble 5 and 5	5a)									
Metabolic gai	ns (Table 5)	, Watts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(66)m	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737 (66)
Lighting gain	s (calculate	ed in Append	dix L, equat	ion L9 or L	9a), also s	ee Table 5						
	19.2861	17.1297	13.9308	10.5465	7.8837	6.6557	7.1917	9.3481	12.5470	15.9313	18.5942	19.8221 (67)
Appliances ga	ins (calcula	ated in App	endix L, equ	ation L13 d	or L13a), a	lso see Tab	le 5					
	213.0566	215.2674	209.6961 19	7.8355 182	2.8636 168.	7921 159.3	915	157.1806	162.7519	174.6125	189.5845	203.6559 (68)
Cooking gains	(calculated	d in Append:	ix L, equati	on L15 or L	15a), also	see Table 5						
	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. e	vaporation (negative va	alues) (Tabl	e 5)								
	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390 (71)
Water heating	gains (Tabl	.e 5)										
	66.5475	64.4389	60.0601	54.1073	50.2425	44.8006	40.1752	46.1016	48.2073	54.3687	61.3259	64.4477 (72)
Total interna	l gains											
	360.9423	358.8882	345.7392	324.5414	303.0418	282.3005	268.8105	274.6824	285.5583	306.9646	331.5566	349.9779 (73)

6. Solar gains

[Jan]			Area m2		Solar flux Table 6a f W/m2		g fic data Table 6b	FF Specific data or Table 6c		Access factor Table 6d		Gains W	
North West			2.8 11.5	600 500	10.6334 19.6403		0.6300 0.6300	0 0	.7000 .7000	0.770	00	9.2941 69.3268	(74) (80)
Solar gains Total gains	78.6209 439.5632	153.3795 512.2677	253.5247 599.2639	374.2119 698.7534	464.5036 767.5454	478.5617 760.8623	454.3230 723.1335	385.9741 660.6565	296.0453 581.6036	182.0649 489.0295	97.9079 429.4645	64.7590 414.7369	(83) (84)

7. Mean inte	rnal temperat	ure (heatin	g season)										
Temperature	during heatin	g periods i	n the livin	g area from	Table 9, Th	nl (C)						21.0000	(85)
Utilisation	factor for ga	ins for liv	ing area, n	il,m (see T	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	26.4582	26.5181	26.5770	26.8575	26.9107	27.1609	27.1609	27.2077	27.0640	26.9107	26.8034	26.6921	
alpha	2.7639	2.7679	2.7718	2.7905	2.7940	2.8107	2.8107	2.8138	2.8043	2.7940	2.7869	2.7795	
util living	area												
2	0.9692	0.9524	0.9165	0.8408	0.7224	0.5737	0.4456	0.4968	0.7130	0.8909	0.9552	0.9735	(86)
MIT	18.7790	19.0498	19.5128	20.0909	20.5532	20.8361	20.9410	20.9189	20.6833	20.0544	19.3117	18.7271	(87)
Th 2	20.0420	20.0439	20.0459	20.0549	20.0566	20.0644	20.0644	20.0659	20.0614	20.0566	20.0531	20.0496	(88)
util rest of	house												
	0.9647	0.9455	0.9042	0.8172	0.6811	0.5097	0.3617	0.4113	0.6555	0.8693	0.9476	0.9695	(89)
MIT 2	17.0547	17.4468	18.1124	18.9314	19.5557	19.9133	20.0245	20.0075	19.7422	18.8998	17.8361	16.9839	(90)
Living area	fraction								ILA =	Living area	/ (4) =	0.3519	(9I)
MIT	17.6616	18.0109	18.6053	19.3395	19.9068	20.2381	20.3471	20.3282	20.0734	19.3061	18.3555	17.5974	(92)
Temperature	adjustment											-0.1500	
adjusted MIT	17.5116	17.8609	18.4553	19.1895	19.7568	20.0881	20.1971	20.1782	19.9234	19.1561	18.2055	17.4474	(93)

8.	Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9476	0.9240	0.8780	0.7917	0.6667	0.5114	0.3741	0.4222	0.6460	0.8434	0.9268	0.9540	(94)
Useful gains	416.5107	473.3448	526.1675	553.2188	511.6888	389.1096	270.5394	278.9220	375.7181	412.4388	398.0466	395.6490	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	1068.0301	1045.4019	962.1469	819.4379	640.3603	432.1805	283.2639	297.0200	460.2276	680.0485	886.2061	1061.5389	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	484.7305	384.4224	324.3686	191.6778	95.7316	0.0000	0.0000	0.0000	0.0000	199.1016	351.4748	495.4221	(98)
Space heating												2526.9294	(98)
Space heating	per m2									(98)	/ (4) =	32.8173 ((99)

8c. Space cooling requirement

Not applicable

9a. Energy requirements - Individual heating systems, including micro-CHP

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Fraction of s Fraction of s Efficiency of Efficiency of Space heating	pace heat fro pace heat fro main space secondary/s requirement	om secondar om main sys heating sys upplementa	ry/supplemer stem(s) stem 1 (in % ry heating s	ntary system 3) System, %	n (Table 11)							0.0000 1.0000 90.5000 0.0000 2792.1872	(201) (202) (206) (208) (211)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	requirement 484.7305	384.4224	324.3686	191.6778	95.7316	0.0000	0.0000	0.0000	0.0000	199.1016	351,4748	495.4221	(98)
Space heating	efficiency	(main heati	ing system 1	.)	00 5000	0.0000	0 0000	0.0000	0 0000	00 5000	00 5000	00 5000	(210)
Space heating	fuel (main)	90.5000 heating svs	90.5000 stem)	90.5000	90.5000	0.0000	0.0000	0.0000	0.0000	90.5000	90.5000	90.5000	(210)
	535.6138	424.7761	358.4184	211.7986	105.7808	0.0000	0.0000	0.0000	0.0000	220.0018	388.3700	547.4278	(211)
Water heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating													
Water heating	requirement 148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078	(64)
Efficiency of (217)m	water heate 88.8310	r 88.7053	88.4289	87.8358	86.7538	83.8000	83.8000	83.8000	83.8000	87.8365	88.5584	83.8000 88.8976	(216) (217)
Fuel for wate	er heating, k 167.6288	Wh/month 146.8169	151.9755	133.3905	129.5877	115.7659	107.2742	123.0987	124.5689	138.5017	149.9529	162.2179	(219)
Water heating Annual totals	fuel used kWh/year											1650.7794	(219)
Space heating	fuel - main	system										2792.1872	(211)
Space heating	fuel - seco	ndary										0.0000	(215)
Electricity f central he main heati	or pumps and ating pump ng flue fan	fans:										30.0000 45.0000	(230c) (230e)
Total electri	city for the	above, kWh	n/year									75.0000	(231)
Total deliver	ed energy fo	(calculated r all uses	a in Appenai	LX L)								4858.5652	(232)
12a. Carbon d	ioxide emiss	ions - Indi	ividual heat	ing systems	including n	micro-CHP							
Space heating Space heating	- main syst - secondary	em 1						Energy kWh/year 2792.1872 0.0000	Emiss	ion factor kg CO2/kWh 0.2160 0.0000	1	Emissions kg CO2/year 603.1124 0.0000	(261) (263)

	Flierdy	EMISSION LACCOL		FULSSIOUS	
	kWh/year	kg CO2/kWh]	g CO2/year	
Space heating - main system 1	2792.1872	0.2160		603.1124	(261)
Space heating - secondary	0.0000	0.0000		0.0000	(263)
Water heating (other fuel)	1650.7794	0.2160		356.5683	(264)
Space and water heating				959.6808	(265)
Pumps and fans	75.0000	0.5190		38.9250	(267)
Energy for lighting	340.5986	0.5190		176.7707	(268)
Total CO2, kg/year				1175.3764	(272)
Dwelling Carbon Dioxide Emission Rate (DER)				15.2600	(273)
16 CO2 EMISSIONS ASSOCIATED WITH APPLIANCES AND COOKING AND SITE-WIDE ELECTRICITY (GENERATION TECHNOLOGIES				
DER				15.2600	ZC1
Total Floor Area			TFA	77.0000	
Assumed number of occupants			N	2.4035	
CO2 emission factor in Table 12 for electricity displaced from grid			EF	0.5190	
CO2 emissions from appliances, equation (L14)				16.3965	ZC2
CO2 emissions from cooking, equation (L16)				2.2946	ZC3
Total CO2 emissions				33.9511	ZC4
Residual CO2 emissions offset from biofuel CHP				0.0000	ZC5
Additional allowable electricity generation, kWh/m²/year				0.0000	ZC6
Resulting CO2 emissions offset from additional allowable electricity generation				0.0000	ZC7
Net CO2 emissions				33.9511	ZC8

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
-						
		Area	Sto	rey height		Volume
		(m2)		(m)		(m3)
Ground floor		77.0000 (1b)	х	2.4000 (2b)	=	184.8000 (1b) - (3b)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	77.0000					(4)
Dwelling volume		(3a)+(3b)+(3c)	+(3d)+(3e)(3n) =	184.8000 (5)

2. Ventilation rate

Number of chimne	ys				main heating 0	+	secondary heating 0	+	other 0 =	tota	1 m3 0 * 40 =	9 per hour 0.0000 (6a)
Number of open f	lues				0	+	0	+	0 =	(0 * 20 =	0.0000 (6b)
Number of intern	nittent fam no worte	ns									3 * 10 =	30.0000 (7a)
Number of fluele	ss gas fir	res								($0 \times 10 =$ 0 × 40 =	0.0000 (7b)
										;	Air changes	per hour
Infiltration due Pressure test Measured/design	to chimne AP50	eys, flues a	ind fans =	= (6a)+(6b)+	(7a)+(7b)+(7c) =				30.0000	/ (5) =	0.1623 (8) Yes 5.0000
Infiltration rat Number of sides	e sheltered											0.4123 (18) 2 (19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500 (20)
Infiltration rat	e adjusted	d to include	shelter fa	ctor					(21	(18) = (18) x	(20) =	0.3505 (21)
		To b	M				T]		0	0	N	Dee
Wind speed	Jan 5 1000	Feb 5 0000	Mar 4 9000	Apr 4 4000	May 4 3000	3 8000	3 8000	Aug 3 7000	4 0000	4 3000	4 5000	4 7000 (22)
Wind factor Adi infilt rate	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750 (22a)
,	0.4469	0.4381	0.4293	0.3855	0.3768	0.3330	0.3330	0.3242	0.3505	0.3768	0.3943	0.4118 (22b)
Effective ac	0.5998	0.5960	0.5922	0.5743	0.5710	0.5554	0.5554	0.5526	0.5614	0.5710	0.5777	0.5848 (25)

3. Heat losses	and heat l	oss paramet	er										
Element				Gross	Openings	Net	tArea	U-value	АхU	K-	-value	АхК	
				m2	m2		m2	W/m2K	W/K	t 1	cJ/m2K	kJ/K	
TER Opening Tvg	be $(Uw = 1.$	40)				14	.4100	1.3258	19.1042				(27)
Heat Loss Floor	r 1	- /				77	.0000	0.1300	10.0100				(28b)
External Wall 1	1			50 6500	14 4100	36	2400	0 1800	6 5232				(29a)
Total net area	of externa	l elements :	Aum (A. m2)	00.0000	11.1100	127	6500	0.1000	0.0202				(31)
Tobai a beat la	W/V = 0		(III) (III)			127	(26) (201 (221 -	25 6274				(32)
rabiic neat ios	55, W/A - 5	uni (A X U)					(20)(30) + (32) -	55.6574				(33)
Thormal maga no	arameter (T	MD - Cm / T	ED) in kT/m	25								250 0000	(25)
Thermal hass po	arameter (r	Pir = Cin / 1	eted weine	LIL Namondiu VI								10.1070	(35)
Inermai bridges	s (Sum(L X	PSI) Calcul	ated using A	Appendix K)						(22)		12.10/0	(30)
Total fabric he	eat loss									(33)	+ (36) =	4/.8244	(37)
				0 00 /0									
Ventilation hea	at loss cal	culated mon	thiy (38)m	= 0.33 x (2)	5) m x (5)								
	Jan	Feb	Mar	Apr	мау	Jun	Jul	Aug	Sep	OCt	NOV	Dec	
(38)m	36.5811	36.3446	36.1128	35.0243	34.8206	33.8725	33.8725	33.6969	34.2377	34.8206	35.2326	35.6634	(38)
Heat transfer o	coeff												
	84.4054	84.1690	83.9372	82.8486	82.6450	81.6968	81.6968	81.5213	82.0620	82.6450	83.0570	83.4877	(39)
Average = Sum (3	39)m / 12 =											82.8477	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.0962	1.0931	1.0901	1.0760	1.0733	1.0610	1.0610	1.0587	1.0657	1.0733	1.0787	1.0843	(40)
HLP (average)												1.0759	(40)
Davs in month													(/
bayo in month	31	28	31	30	31	30	31	31	30	31	30	31	(41)
	51	20	51	50	51	50	51	51	50	51	50	51	(+ +)

4. Water heati	ng energy r	equirements	(kWh/year)										
Assumed occupa Average daily	ancy hot water u	se (litres/	day)									2.4035 91.2825	(42) (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate	er use												
	100.4108	96.7595	93.1082	89.4569	85.8056	82.1543	82.1543	85.8056	89.4569	93.1082	96.7595	100.4108	(44)
Energy conte	148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078	(45)
Energy content	: (annual)									Total = Su	1m (45) m =	1436.2293	(45)
Distribution 1	Loss (46)m	= 0.15 x (4	5)m										
	22.3359	19.5352	20.1585	17.5747	16.8633	14.5518	13.4844	15.4735	15.6583	18.2482	19.9194	21.6312	(46)
Water storage	loss:												
Total storage	loss												
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
If cylinder co	ntains dedi	cated solar	storage										
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(57)
Combi loss	50.9589	44.5359	47.4469	44.1157	43.7256	40.5144	41.8649	43.7256	44.1157	47.4469	47.7170	50.9589	(61)
Total heat rec	quired for w	ater heatin	g calculate	d for each n	month								

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63)
								Solar inpu	t (sum of m	onths) = Su	um (63) m =	0.0000 (63)
Output from w/	h											
-	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (64)
								Total pe	r year (kWh	/year) = Su	um (64) m =	1983.3557 (64)
Heat gains from	m water hea	ting, kWh/m	onth									
2	62.2511	54.4369	56.5465	49.9862	48.3118	42.3850	40.3566	45.2310	45.7382	52.3120	56.0839	60.6888 (65)

5. Internal gains (see Table 5 and 5a)

Metabolic gai	ns (Table 5)	, Watts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(66)m	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737 (66)
Lighting gain	s (calculate	ed in Append	dix L, equat	ion L9 or L	9a), also s	ee Table 5						
	19.2861	17.1297	13.9308	10.5465	7.8837	6.6557	7.1917	9.3481	12.5470	15.9313	18.5942	19.8221 (67)
Appliances ga	ins (calcula	ated in App	endix L, eq	ation L13	or L13a), a	lso see Tab	Le 5					
	213.0566	215.2674	209.6961 19	7.8355 182	2.8636 168.	7921 159.3	915	157.1806	162.7519	174.6125	189.5845	203.6559 (68)
Cooking gains	(calculated	i in Append:	ix L, equati	on L15 or L	15a), also	see Table 5						
	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. e	vaporation (negative va	alues) (Tabl	e 5)								
	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390 (71)
Water heating	gains (Tabl	Le 5)										
	83.6708	81.0073	76.0033	69.4252	64.9352	58.8681	54.2427	60.7943	63.5252	70.3118	77.8943	81.5710 (72)
Total interna	l gains											
	378.0656	375.4566	361.6824	339.8594	317.7346	296.3680	282.8780	289.3752	300.8763	322.9078	348.1250	367.1012 (73)

6. Solar gains

[Jan]			A	m2	Solar flux Table 6a W/m2	Speci or	g fic data Table 6b	Specific or Tabi	FF data le 6c	Acces facto Table 6	ss or öd	Gains W	
North West			2.8 11.5	500 500	10.6334 19.6403		0.6300 0.6300	0	.7000 .7000	0.770	00 00	9.2941 69.3268	(74) (80)
Solar gains Total gains	78.6209 456.6865	153.3795 528.8361	253.5247 615.2071	374.2119 714.0713	464.5036 782.2381	478.5617 774.9298	454.3230 737.2010	385.9741 675.3493	296.0453 596.9216	182.0649 504.9727	97.9079 446.0329	64.7590 431.8602	(83) (84)

7. Mean inter	nal temperat	ure (heatin	g season)									
Temperature d	uring heatin	g periods i	n the living	g area from	Table 9, Th	11 (C)						21.0000 (85)
Utilisation f	actor for ga	ins for liv	ing area, n	il,m (see T	able 9a)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	63.3516	63.5296	63.7050	64.5421	64.7011	65.4520	65.4520	65.5930	65.1607	64.7011	64.3802	64.0480
alpha	5.2234	5.2353	5.2470	5.3028	5.3134	5.3635	5.3635	5.3729	5.3440	5.3134	5.2920	5.2699
util living a	rea											
	0.9981	0.9956	0.9860	0.9460	0.8341	0.6457	0.4822	0.5445	0.8193	0.9747	0.9960	0.9986 (86)
MIT	19.8252	19.9787	20.2472	20.5958	20.8564	20.9722	20.9951	20.9910	20.9044	20.5456	20.1223	19.8009 (87)
Th 2	20.0040	20.0065	20.0089	20.0205	20.0227	20.0328	20.0328	20.0347	20.0289	20.0227	20.0183	20.0137 (88)
util rest of 3	house											
	0.9975	0.9941	0.9811	0.9271	0.7829	0.5601	0.3791	0.4358	0.7455	0.9624	0.9944	0.9981 (89)
MIT 2	18.4345	18.6602	19.0511	19.5510	19.8861	20.0150	20.0310	20.0311	19.9536	19.4923	18.8791	18.4060 (90)
Living area f	raction								fLA =	Living area	/ (4) =	0.3519 (91)
MIT	18.9239	19.1243	19.4721	19.9187	20.2276	20.3519	20.3703	20.3689	20.2882	19.8630	19.3166	18.8969 (92)
Temperature a	djustment											0.0000
adjusted MIT	18.9239	19.1243	19.4721	19.9187	20.2276	20.3519	20.3703	20.3689	20.2882	19.8630	19.3166	18.8969 (93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	Mav	Tun	.Tu]	Aug	Sen	Oct	Nov	Dec
Utilisation	0.9965	0.9922	0.9776	0.9248	0.7947	0.5894	0.4156	0.4743	0.7673	0.9598	0.9927	0.9974 (94)
Useful gains	455.0859	524.7147	601.4352	660.3774	621.6209	456.7176	306.3553	320.2879	458.0055	484.6641	442.7872	430.7182 (95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)
Heat loss rate	e W											
	1234.3396	1197.2420	1088.8385	912.8858	704.7628	469.9080	308.0247	323.5509	507.8192	765.5405	1014.6758	1227.0134 (97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000 (97a)
Space heating	kWh											
	579.7648	451.9383	362.6280	181.8060	61.8576	0.0000	0.0000	0.0000	0.0000	208.9721	411.7598	592.4436 (98)
Space heating												2851.1702 (98)
Space heating	per m2									(98) / (4) =	37.0282 (99)

8c. Space cooling requirement Not applicable

9a. Energy requirements - Individual heating systems, including micro-CHP Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s)

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r19

Design SAP

elmhurst energy

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Efficiency of Efficiency of Space heating	main space f secondary/su requirement	neating sys upplementa	stem 1 (in s ry heating s	%) system, %								93.4000 (206) 0.0000 (208) 3052.6448 (211)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Space heating	requirement											
	579.7648	451.9383	362.6280	181.8060	61.8576	0.0000	0.0000	0.0000	0.0000	208.9721	411.7598	592.4436 (98)
Space heating	efficiency ((main heati	ing system 1	.)								
	93.4000	93.4000	93.4000	93.4000	93.4000	0.0000	0.0000	0.0000	0.0000	93.4000	93.4000	93.4000 (210)
Space heating	fuel (main h	eating sys	stem)	104 (501	66 0007	0 0000	0 0000	0 0000	0 0000	000 7000	440.05.00	(24 2070 (011)
Watan beating	620.7332	483.8/40	388.2527	194.6531	66.2287	0.0000	0.0000	0.0000	0.0000	223./388	440.8563	634.30/9 (211)
water neating	1 equirement	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000 (215)
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (213)
Water heating												
Water heating	requirement											
	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (64)
Efficiency of	water heater	<u>.</u>										80.3000 (216)
(217)m	87.5762	87.3366	86.7557	85.3533	82.9290	80.3000	80.3000	80.3000	80.3000	85.5852	87.0625	87.6676 (217)
Fuel for wate	r heating, k	Wh/month										
	228.2187	200.1111	209.5968	188.9561	188.2911	171.2656	164.0855	182.9169	184.9370	197.5830	207.3372	222.6211 (219)
Water heating	fuel used											2345.9200 (219)
Annual totals	kWh/year											
Space heating	fuel - main	system										3052.6448 (211)
Space heating	fuel - secor	ndary										0.0000 (215)
Electricity fo		fana.										
control ho	ting numn	Lans.										20 0000 (000-
main heatir	a fluo fan											45 0000 (2300)
Total oloctri	ig ilue lan	aborro kWk	./									75 0000 (2308)
Floatrigity fo	r lighting (above, kwi	1/year d in Annond:	T)								240 5086 (222)
Total delivere	d energy for	call uses	a ili Appella.	LA L)								5814 1634 (238)
rotar activer.	a energy roi	u11 4000										001111001 (200)
12a. Carbon di	oxide emissi	lons - Indi	ividual heat	ing systems	including n	micro-CHP						
								_				

kg CO2/kWh	lag (002 / 110 a m	
	kg COZ/year	
0.2160	659.3713 ((261)
0.0000	0.0000 ((263)
0.2160	506.7187 ((264)
	1166.0900 ((265)
0.5190	38.9250	(267)
0.5190	176.7707 ((268)
	1381.7857 ((272)
	15.1440 ((272a)
	1.0000	
	2.2957 ((272b)
	0.5055 ((272c)
	17.9500	(273)
	0.2160 0.0000 0.2160 0.2160 0.5190 0.5190	kg C02/kWh kg C02/year 0.2160 659.3713 0.0000 0.0000 0.2160 506.7187 1166.0900 1166.0900 0.5190 176.7707 1381.7857 15.1440 1.0000 2.2957 0.5055 17.9500

Appendix C: DER Worksheet – Be Green Option with Renewable Technology

Property Reference	PV				Issued on Date	01/03/2024
Assessment	F1 - PV			Prop Type Ref		
Reference						
Property	35, Crescent Road, Caterh	nam, CR3 6LE				
SAP Rating		87 B	DER	13.52	TER	17.95
Environmental		90 B	% DER <ter< th=""><th></th><th>24.66</th><th></th></ter<>		24.66	
CO₂ Emissions (t/yea	ar)	0.90	DFEE	39.39	TFEE	48.98
General Requiremer	nts Compliance	Pass	% DFEE <tfe< th=""><th>E</th><th>19.59</th><th></th></tfe<>	E	19.59	
Assessor Details	Mr. Peter Kinsella, Base Energ peter@baseenergy.co.uk	gy Services Ltd	, Tel: 0151 933	0328,	Assessor ID	L770-0002
Client						

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COM	PLIANCE REPORT - Approved	d Document L1A, 2013 Edition, England	
DWELLING AS DESI	IGNED		
End of terrace of	dwelling, total floor are	ea 117 m²	
This report cove It is not a comp	ers items included within plete report of regulation	n the SAP calculations. ons compliance.	
la TER and DER Fuel for main he Fuel factor:1.00	eating:Mains gas) (mains gas)		
Dwelling Carbon	Dioxide Emission Rate (DE	ER) 13.52 kgCOU/m²OK	
1b TFEE and DFEE Target Fabric En Dwelling Fabric	E nergy Efficiency (TFEE)4 Energy Efficiency (DFEE)	9.0 kWh/m²/yr 39.4 kWh/m²/yrOK	
2 Fabric U-value Element External wall	es Average 0.20 (max. 0.30)	Highest 0.20 (max. 0.70) OK	
Party wall Floor	0.00 (max. 0.20) 0.11 (max. 0.25)	- OK 0.11 (max. 0.70) OK	
Roof Openings	(no roof) 1.30 (max. 2.00)	1.30 (max. 3.30) OK	
2a Thermal bridg Thermal bridging	ging g calculated from linear	thermal transmittances for each junction	
3 Air permeabil:	ity		
Air permeability Maximum	y at 50 pascals:	4.00 (design value) 10.0	OK
4 Heating effic: Main heating sys Data from databa Vaillant ecoTEC Combi boiler Efficiency: 89.6 Minimum: 88.0%	iency stem: see exclusive 843 VUW 436/5 5% SEDBUK2009	Boiler system with radiators or underfloor - Main: -7 (H-GB) OK	s gas
Secondary heatin	ng system:	None	
5 Cylinder insul Hot water storad	lation ge	No cylinder	
6 Controls			
Space heating co	ontrols:	Time and temperature zone control	OK
Hot water contro	ols:	No cylinder	
Boiler interloc	k	Yes	ОК
7 Low energy lic Percentage of f Minimum	ghts ixed lights with low-ener	rgy fittings:100% 75%	ок
8 Mechanical ver Not applicable	ntilation		
9 Summertime ter Overheating rish Based on:	mperature k (Thames Valley):	Slight	ок
Overshading: Windows facing M	North:	Average 2.86 m², No overhang	
Windows facing M	West:	11.55 m², No overhang 6.00 ach	
Blinds/curtains	:	None	
10 Key features			
Party wall U-val	lue -value	0.00 W/m ² K	
Photovoltaic ar:	ray	0.30 kW	

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions								
		Area	Storey	height			Volume	
		(m2)		(m)			(m3)	
Ground floor		77.0000 (1b)	x	2.4000	(2b)	=	184.8000	(1b) - (3b)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	77.0000							(4)
Dwelling volume		(3a)+(3b))+(3c)+(3	d)+(3e).	(3n)	=	184.8000	(5)

2. Ventilation rate

					main heating		secondary heating		other		total	r	n3 per hour	
Number of chimne	eys				0	+	0	+	0	=	0	* 40 =	0.0000	(6a)
Number of open f	lues				0	+	0	+	0	=	0	* 20 =	0.0000	(6b)
Number of intern	nittent ia	ns									0	* 10 =	30,0000	(/a) (7b)
Number of fluele	ve vents see dae fin										0	* 40 =	0 0000	(7c)
Number of fidere	.55 gus III										0	10	0.0000	(, 0)
											Ai	r change	es per hour	
Infiltration due	e to chimne	eys, flues a	and fans	= (6a)+(6b)+(7a)+(7b)+((7c) =				30	.0000 /	(5) =	0.1623	(8)
Pressure test													Yes	
Measured/design	AP50												4.0000	
Infiltration rat	ie												0.3623	(18)
Number of sides	sheltered												2	(19)
Shelter factor									(20) = 1	- [0.	075 x (1	9)] =	0.8500	(20)
Infiltration rat	e adjusted	d to include	shelter fa	ctor						(21) =	(18) x (2	20) =	0.3080	(21)
	Jan	Feb	Mar	Apr	Mav	สมภ	Jul	Aug	Sep	0ct	+	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.800	0 3.8000	3.70	00 4.000	0 4.3	3000	4.5000	4.7000	(22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.950	0 0.9500	0.92	50 1.000	0 1.0	0750	1.1250	1.1750	(22a)
Adj infilt rate														
	0.3927	0.3850	0.3773	0.3388	0.3311	0.292	6 0.2926	0.28	49 0.308	0.0	3311	0.3465	0.3619	(22b)
Effective ac	0.5771	0.5741	0.5712	0.5574	0.5548	0.542	8 0.5428	0.54	06 0.547	4 0.5	5548	0.5600	0.5655	(25)

Flement Cross Openings Natārea II-valus à v II K-valus à	x K J/K
Dicasono di dicaso de la contrada de	J/K
m2 m2 m2 W/m2K W/K kJ/m2K	
Window (Uw = 1.30) 14.4100 1.2357 17.8070	(27)
Heat Loss Floor 1 77.0000 0.1100 8.4700	(28b)
External Wall 1 50.6500 14.4100 36.2400 0.2000 7.2480	(29a)
Total net area of external elements Aum(A, m2) 127.6500	(31)
Fabric heat loss, $W/K = Sum (A \times U)$ (26)(30) + (32) = 33.5250	(33)
Party Wall 1 53.0000 0.0000 0.0000	(32)
-	
Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K 100.	000 (35)
Thermal bridges (Sum(L x Psi) calculated using Appendix K) 12.	215 (36)
Total fabric heat loss (33) + (36) = 45.	465 (37)
Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5)	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	
(38)m 35.1939 35.0113 34.8323 33.9917 33.8345 33.1023 33.1023 32.9668 33.3843 33.8345 34.1526 34.	852 (38)
Heat transfer coeff	
80.8404 80.6578 80.4789 79.6383 79.4810 78.7489 78.7489 78.6133 79.0309 79.4810 79.7992 80.	318 (39)
Average = Sum(39)m / 12 = 79.	375 (39)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	
HLP 1.0499 1.0475 1.0452 1.0343 1.0322 1.0227 1.0227 1.0210 1.0264 1.0322 1.0364 1.	407 (40)
HLP (average) 1.	343 (40)
Days in month	
- 31 28 31 30 31 30 31 31 30 31 30 31 30 31 30	31 (41)

4. Water heating energy requirements (kWh/year)														
Assumed occupa Average daily	ncy hot water u	use (litres/	'dav)									2.4035	(42)	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Daily hot water use														
	100.4108	96.7595	93.1082	89.4569	85.8056	82.1543	82.1543	85.8056	89.4569	93.1082	96.7595	100.4108	(44)	
Energy conte	148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078	(45)	
Energy content	(annual)									Total = Su	um (45) m =	1436.2293	(45)	
Distribution 1	.oss (46)m	$= 0.15 \times (4)$	5) m											
	22.3359	19.5352	20.1585	17.5747	16.8633	14.5518	13.4844	15.4735	15.6583	18.2482	19.9194	21.6312	(46)	
Water storage	loss:													
Total storage	loss													
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)	
If cylinder co	ntains dedi	cated solar	storage											
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(57)	
Combi loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(61)	

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Total	heat req	uired for	water heati	ng calculate	ed for each	month	07 0110	00 0057	100 1567	104 2007	101 6550	100 7050	144 0070 (60)
		148.9063	130.2344	134.3902 11	7.1646 112	.4223	97.0119	89.895/	103.150/	104.388/	121.6550	132./959	144.2078 (62)
Solar	input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63)
Solar input (sum of months) = Sum(63)m =												0.0000 (63)	
FGHRS		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Output	from w/	h											
-		148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078 (64)
									Total p	er year (kW	'h/year) = S	um(64)m =	1436.2293 (64)
Heat o	ains fro	m water he	ating, kWh/	month									
neue g	41110 110	49.5113	43.3029	44.6847	38.9572	37.3804	32.2564	29.8903	34.2996	34.7092	40.4503	44.1546	47.9491 (65)

5. Internal g	ains (see Ta	uble 5 and 5	5a)									
Metabolic gai	ns (Table 5)	, Watts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(66)m	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737 (66)
Lighting gain	s (calculate	ed in Append	dix L, equat	ion L9 or L	9a), also s	ee Table 5						
	19.2861	17.1297	13.9308	10.5465	7.8837	6.6557	7.1917	9.3481	12.5470	15.9313	18.5942	19.8221 (67)
Appliances ga	ins (calcula	ated in App	endix L, equ	ation L13 d	or L13a), a	lso see Tab	le 5					
	213.0566	215.2674	209.6961 19	7.8355 182	2.8636 168.	7921 159.3	915	157.1806	162.7519	174.6125	189.5845	203.6559 (68)
Cooking gains	(calculated	d in Append:	ix L, equati	on L15 or L	15a), also	see Table 5						
	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. e	vaporation (negative va	alues) (Tabl	e 5)								
	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390 (71)
Water heating	gains (Tabl	.e 5)										
	66.5475	64.4389	60.0601	54.1073	50.2425	44.8006	40.1752	46.1016	48.2073	54.3687	61.3259	64.4477 (72)
Total interna	l gains											
	360.9423	358.8882	345.7392	324.5414	303.0418	282.3005	268.8105	274.6824	285.5583	306.9646	331.5566	349.9779 (73)

6. Solar gains

[Jan]	Jan]		Area m2		Solar flux Table 6a W/m2	Speci or	g fic data Table 6b	Specific or Tabi	FF data le 6c	Acces facto Table 6	ss or id	Gains W	
North West		2.8 11.5	600 500	10.6334 19.6403		0.6300 0.6300	0 0	.7000 .7000	0.770	00	9.2941 69.3268	(74) (80)	
Solar gains Total gains	78.6209 439.5632	153.3795 512.2677	253.5247 599.2639	374.2119 698.7534	464.5036 767.5454	478.5617 760.8623	454.3230 723.1335	385.9741 660.6565	296.0453 581.6036	182.0649 489.0295	97.9079 429.4645	64.7590 414.7369	(83) (84)

7. Mean inte	rnal temperat	ure (heating	g season)										
Temperature	during heating	g periods i	n the living	g area from	Table 9, Th	nl (C)						21.0000	(85)
Utilisation	factor for ga	ins for liv	ing area, n	il,m (see T	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	26.4582	26.5181	26.5770	26.8575	26.9107	27.1609	27.1609	27.2077	27.0640	26.9107	26.8034	26.6921	
alpha	2.7639	2.7679	2.7718	2.7905	2.7940	2.8107	2.8107	2.8138	2.8043	2.7940	2.7869	2.7795	
util living	area												
-	0.9692	0.9524	0.9165	0.8408	0.7224	0.5737	0.4456	0.4968	0.7130	0.8909	0.9552	0.9735	(86)
MIT	18.7790	19.0498	19.5128	20.0909	20.5532	20.8361	20.9410	20.9189	20.6833	20.0544	19.3117	18.7271	(87)
Th 2	20.0420	20.0439	20.0459	20.0549	20.0566	20.0644	20.0644	20.0659	20.0614	20.0566	20.0531	20.0496	(88)
util rest of	house												
	0.9647	0.9455	0.9042	0.8172	0.6811	0.5097	0.3617	0.4113	0.6555	0.8693	0.9476	0.9695	(89)
MIT 2 Living area	17.0547 fraction	17.4468	18.1124	18.9314	19.5557	19.9133	20.0245	20.0075	19.7422 fLA =	18.8998 Living area	17.8361 / (4) =	16.9839 0.3519	(90) (91)
MIT Temperature	17.6616 adjustment	18.0109	18.6053	19.3395	19.9068	20.2381	20.3471	20.3282	20.0734	19.3061	18.3555	17.5974 -0.1500	(92)
adjusted MIT	17.5116	17.8609	18.4553	19.1895	19.7568	20.0881	20.1971	20.1782	19.9234	19.1561	18.2055	17.4474	(93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9476	0.9240	0.8780	0.7917	0.6667	0.5114	0.3741	0.4222	0.6460	0.8434	0.9268	0.9540 ((94)
Useful gains	416.5107	473.3448	526.1675	553.2188	511.6888	389.1096	270.5394	278.9220	375.7181	412.4388	398.0466	395.6490 ((95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 ((96)
Heat loss rate	e W												
	1068.0301	1045.4019	962.1469	819.4379	640.3603	432.1805	283.2639	297.0200	460.2276	680.0485	886.2061	1061.5389 ((97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000 /	(97a)
Space heating	kWh												
	484.7305	384.4224	324.3686	191.6778	95.7316	0.0000	0.0000	0.0000	0.0000	199.1016	351.4748	495.4221 ((98)
Space heating												2526.9294	(98)
Space heating	per m2									(98)	/ (4) =	32.8173 (99)

8c. Space cooling requirement

Not applicable

9a. Energy requirements - Individual heating systems, including micro-CHP

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Fraction of sp Fraction of sp Efficiency of Efficiency of Space heating	raction of space heat from secondary/supplementary system (Table 11) raction of space heat from main system(s) fficiency of main space heating system 1 (in %) fficiency of secondary/supplementary heating system, % pace heating requirement Lap Eeb Mar Por May Jun Jul Pug Sep Oct Now Dec													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Space heating	requirement 484.7305	384.4224	324.3686	191.6778	95.7316	0.0000	0.0000	0.0000	0.0000	199.1016	351.4748	495.4221	(98)	
Space heating	efficiency 90.5000	(main heati 90.5000	ing system 1) 90.5000	90.5000	90.5000	0.0000	0.0000	0.0000	0.0000	90.5000	90.5000	90.5000	(210)	
Space heating	fuel (main) 535.6138	heating sys 424.7761	stem) 358.4184	211.7986	105.7808	0.0000	0.0000	0.0000	0.0000	220.0018	388.3700	547.4278	(211)	
Water heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)	
Water heating Water heating	requirement													
Efficiency of	148.9063 water heate	130.2344 r	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078 83.8000	(64) (216)	
(217)m Fuel for wate	88.8310	88.7053	88.4289	87.8358	86.7538	83.8000	83.8000	83.8000	83.8000	87.8365	88.5584	88.8976	(217)	
Water heating	167.6288 fuel used	146.8169	151.9755	133.3905	129.5877	115.7659	107.2742	123.0987	124.5689	138.5017	149.9529	162.2179 1650.7794	(219) (219)	
Annual totals Space heating Space heating	kWh/year fuel - main fuel - seco	system ndary										2792.1872 0.0000	(211) (215)	
Electricity for central hear main heating Total electric Electricity for	or pumps and ating pump ng flue fan city for the or lighting	above, kWH (calculated	n/year d in Appendi:	к L)								30.0000 45.0000 75.0000 340.5986	(230c) (230e) (231) (232)	
Energy saving PV Unit 0 (0. Total delivere	/generation 80 * 0.30 * ed energy fo	technologi 1080 * 1.0 9r all uses	es (Appendic 0) =	es M ,N an	d Q)					-259.0859		-259.0859 4599.4793	(233) (238)	
12a. Carbon d:	ioxide emiss	ions - Indi	vidual heat	ing systems	including :	micro-CHP								
Space heating Space heating Water heating Space and watt Pumps and fan Energy for lig	- main syst - secondary (other fuel er heating s ghting	em 1 ,)						Energy kWh/year 2792.1872 0.0000 1650.7794 75.0000 340.5986	Emiss	ion factor kg CO2/kWh 0.2160 0.0000 0.2160 0.5190 0.5190	k	Emissions g CO2/year 603.1124 0.0000 356.5683 959.6808 38.9250 176.7707	(261) (263) (264) (265) (267) (268)	
Energy saving PV Unit Total CO2, kg, Dwelling Carbo	g/generation /year on Dioxide E	technolog: mission Rat	ies te (DER)					-259.0859		0.5190		-134.4656 1040.9109 13.5200	(269) (272) (273)	
16 CO2 EMISSIC DER Total Floor A: Assumed numbe: CO2 emissions CO2 emissions Total CO2 emi Residual CO2 emi Residual CO2 emiss: Resulting CO2 Net CO2 emiss:	ONS ASSOCIAT rea r of occupan factor in Ta from applia from cookin ssions emissions of lowable elec emissions o ions	ED WITH APP ts ble 12 for nces, equat g, equation fset from h tricity ger ffset from	PLIANCES AND electricity tion (L14) n (L16) Diofuel CHP meration, KWM additional a	COOKING AN displaced h/m²/year illowable e	D SITE-WIDE from grid lectricity o	ELECTRICITY	(GENERATIO	N TECHNOLOGI	ES		TFA N EF	13.5200 77.0000 2.4035 0.5190 16.3965 2.2946 32.2111 0.0000 0.0000 0.0000 32.2111	ZC1 ZC2 ZC3 ZC4 ZC5 ZC6 ZC7 ZC8	

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

	-					
1. Overall dwelling dimensions						
		Area	Stor	ey height		Volume
		(m2)		(m)		(m3)
Ground floor		77.0000 (1b)	х	2.4000 (2b)	=	184.8000 (1b) - (3b)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	77.0000					(4)
Dwelling volume		(3a)+(3b	o)+(3c)·	+(3d)+(3e)(3n) =	184.8000 (5)

2. Ventilation rate

Number of chimne	ys				main heating 0	+	secondary heating 0	+	other 0 =	tota	1 m3 0 * 40 =	9 per hour 0.0000 (6a)
Number of open f	lues				0	+	0	+	0 =	(0 * 20 =	0.0000 (6b)
Number of intern	nittent fam no worte	ns									3 * 10 =	30.0000 (7a)
Number of fluele	ss gas fir	res								($0 \times 10 =$ 0 × 40 =	0.0000 (7b)
										;	Air changes	per hour
Infiltration due Pressure test Measured/design	to chimne AP50	eys, flues a	ind fans =	= (6a)+(6b)+	(7a)+(7b)+(7c) =				30.0000	/ (5) =	0.1623 (8) Yes 5.0000
Infiltration rat Number of sides	e sheltered											0.4123 (18) 2 (19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500 (20)
Infiltration rat	e adjusted	d to include	shelter fa	ctor					(21	(18) = (18) x	(20) =	0.3505 (21)
		To b	M				T]		0	0	N	Dee
Wind speed	Jan 5 1000	Feb 5 0000	Mar 4 9000	Apr 4 4000	May 4 3000	3 8000	3 8000	Aug 3 7000	4 0000	4 3000	4 5000	4 7000 (22)
Wind factor Adi infilt rate	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750 (22a)
,	0.4469	0.4381	0.4293	0.3855	0.3768	0.3330	0.3330	0.3242	0.3505	0.3768	0.3943	0.4118 (22b)
Effective ac	0.5998	0.5960	0.5922	0.5743	0.5710	0.5554	0.5554	0.5526	0.5614	0.5710	0.5777	0.5848 (25)

3. Heat losses	and heat l	oss paramet	er										
Element				Gross	Openings	Net	tArea	U-value	АхU	K-	-value	АхК	
				m2	m2		m2	W/m2K	W/K	t 1	kJ/m2K	kJ/K	
TER Opening Tvg	be $(Uw = 1.$	40)				14	.4100	1.3258	19.1042				(27)
Heat Loss Floor	r 1	- /				77	.0000	0.1300	10.0100				(28b)
External Wall 1	1			50 6500	14 4100	36	2400	0 1800	6 5232				(29a)
Total net area	of externa	l elements :	Aum (A. m2)	00.0000	11.1100	127	6500	0.1000	0.0202				(31)
Tobai a beat la	W/V = 0		(III) (III)			127	(26) (201 (221 -	25 6274				(32)
rabiic neat ios	55, W/A - 5	uni (A X U)					(20)(30) + (32) -	55.6574				(33)
Thormal maga no	arameter (T	MD - Cm / T	ED) in kT/m	25								250 0000	(25)
Thermal hass po	arameter (r	Pir = Cin / 1	eted weine	LIL Namondiu VI								10.1070	(35)
Inermai bridges	s (Sum(L X	PSI) Calcul	ated using A	Appendix K)						(22)		12.10/0	(30)
Total fabric he	eat loss									(33)	+ (36) =	4/.8244	(37)
				0 00 /0									
Ventilation hea	at loss cal	culated mon	thiy (38)m	= 0.33 x (2)	5) m x (5)								
	Jan	Feb	Mar	Apr	мау	Jun	Jul	Aug	Sep	OCt	NOV	Dec	
(38)m	36.5811	36.3446	36.1128	35.0243	34.8206	33.8725	33.8725	33.6969	34.2377	34.8206	35.2326	35.6634	(38)
Heat transfer o	coeff												
	84.4054	84.1690	83.9372	82.8486	82.6450	81.6968	81.6968	81.5213	82.0620	82.6450	83.0570	83.4877	(39)
Average = Sum (3	39)m / 12 =											82.8477	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.0962	1.0931	1.0901	1.0760	1.0733	1.0610	1.0610	1.0587	1.0657	1.0733	1.0787	1.0843	(40)
HLP (average)												1.0759	(40)
Davs in month													(/
bayo in month	31	28	31	30	31	30	31	31	30	31	30	31	(41)
	51	20	51	50	51	50	51	51	50	51	50	51	(+ +)

4. Water heat	ing energy r	equirements	(kWh/year)										
Assumed occupa Average daily	ancy hot water u	se (litres/	'day)									2.4035 91.2825	(42) (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate	er use												
	100.4108	96.7595	93.1082	89.4569	85.8056	82.1543	82.1543	85.8056	89.4569	93.1082	96.7595	100.4108	(44)
Energy conte	148.9063	130.2344	134.3902	117.1646	112.4223	97.0119	89.8957	103.1567	104.3887	121.6550	132.7959	144.2078	(45)
Energy content (annual) Total = Sum(45)m =											1436.2293	(45)	
Distribution 3	loss (46)m	$= 0.15 \times (4)$	5)m										
	22.3359	19.5352	20.1585	17.5747	16.8633	14.5518	13.4844	15.4735	15.6583	18.2482	19.9194	21.6312	(46)
Water storage	loss:												
Total storage	loss												
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
If cylinder co	ontains dedi	cated solar	storage										
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(57)
Combi loss	50.9589	44.5359	47.4469	44.1157	43.7256	40.5144	41.8649	43.7256	44.1157	47.4469	47.7170	50.9589	(61)
Total heat red	quired for w	ater heatin	g calculate	d for each n	month								

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63)
								Solar inpu	t (sum of m	nonths) = Su	um (63) m =	0.0000 (63)
Output from w/	h											
-	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (64)
								Total pe	r year (kWh	n/year) = Su	um (64) m =	1983.3557 (64)
Heat gains from	m water hea	ting, kWh/m	onth									
	62.2511	54.4369	56.5465	49.9862	48.3118	42.3850	40.3566	45.2310	45.7382	52.3120	56.0839	60.6888 (65)

5. Internal gains (see Table 5 and 5a)

Table 5), Wa	atts											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
0.1737 12	0.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737	120.1737 (6	6)
alculated i	n Appendi:	x L, equation	on L9 or L9a), also see	e Table 5							
9.2861 1	7.1297	13.9308	10.5465	7.8837	6.6557	7.1917	9.3481	12.5470	15.9313	18.5942	19.8221 (0	ŝ7)
(calculated	in Appen	dix L, equa	tion L13 or	L13a), als	o see Table	e 5						
3.0566 215	.2674 20	9.6961 197	.8355 182.8	3636 168.7	921 159.39	15	157.1806	162.7519	174.6125	189.5845	203.6559 (6	58)
lculated in	Appendix	L, equation	n L15 or L15	a), also se	ee Table 5							
5.0174 3	5.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174	35.0174 (6	i9)
3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (7	70)
ration (neg	ative valu	ues) (Table	5)									
6.1390 -9	6.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390	-96.1390 (7	71)
ns (Table 5)											
3.6708 8	1.0073	76.0033	69.4252	64.9352	58.8681	54.2427	60.7943	63.5252	70.3118	77.8943	81.5710 (*	12)
ins												
8.0656 37	5.4566	361.6824	339.8594	317.7346	296.3680	282.8780	289.3752	300.8763	322.9078	348.1250	367.1012 (7	/3)
	Table 5), W. Jan 0.1737 12 alculated i 9.2861 1 (calculated 3.0566 215 lculated in 5.0174 3 3.0000 ration (neg 6.1390 -9 ns (Table 5 3.6708 8 ins 8.0656 37	Table 5), Watts Jan Feb 0.1737 120.1737 alculated in Appendi 9.2861 17.1297 (calculated in Appen 3.0566 215.2674 20 Jculated in Appendix 5.0174 35.0174 3.0000 3.0000 ration (negative val 6.1390 -96.1390 ns (Table 5) 3.6708 81.0073 ins 8.0656 375.4566	Table 5), Watts Jan Feb Mar 0.1737 120.1737 120.1737 alculated in Appendix L, equati 17.1297 13.9308 (calculated in Appendix L, equati 3.0566 215.2674 209.6961 197 lculated in Appendix L, equatio 5.0174 35.0174 35.0174 3.0000 3.0000 3.0000 3.0000 3.0000 ration (negative values) (Table 6.1390 -96.1390 ns (Table 5) 3.6708 81.0073 76.0033 ins 8.0656 375.4566 361.6824 361.6824	Table 5), Watts Jan Feb Mar Apr 0.1737 120.1737 120.1737 120.1737 alculated in Appendix L, equation L9 or L98 9.2861 17.1297 13.9308 10.5465 (calculated in Appendix L, equation L13 or L13 or 13.9308 10.5465 (calculated in Appendix L, equation L13 or L15 or L15 5.0174 35.0174 35.0174 3.0000 3.0000 3.0000 3.0000 3.0000 ration (negative values) (Table 5) 3.6708 81.0073 76.0033 69.4252 ins 8.0656 375.4566 361.6824 339.8594	Table 5), Watts Jan Feb Mar Apr May 0.1737 120.1737 120.1737 120.1737 120.1737 alculated in Appendix L, equation L9 or L9a), also see 9.2861 17.1297 13.9308 10.5465 7.8837 (calculated in Appendix L, equation L13 or L13a), also see 13.9306 21.5467 7.8837 (calculated in Appendix L, equation L13 or L13a), also see 5.0174 35.0174 35.0174 35.0174 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ration (negative values) (Table 5) -96.1390 -96.1390 -96.1390 -96.1390 3.0708 81.0073 76.0033 69.4252 64.9352 ins 8.0656 375.4566 361.6824 339.8594 317.7346	Table 5), Watts Mar Apr May Jun Jan Feb Mar Apr May Jun 0.1737 120.1737 120.1737 120.1737 120.1737 120.1737 alculated in Appendix L, equation L9 or L9a), also see Table 5 9.2861 17.1297 13.9308 10.5465 7.8837 6.6557 (calculated in Appendix L, equation L13 or L13a), also see Table 5 9.0566 215.2674 209.6961 197.8355 182.8636 168.7921 159.39 culated in Appendix L, equation L15 or L15a), also see Table 5 5.0174 35.0174 35.0174 35.0174 35.0174 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ration (negative values) (Table 5) -96.1390 -96.1390 -96.1390 -96.1390 3.0708 81.0073 76.0033 69.4252 64.9352 58.8681 ins 8.0656 375.4566 361.6824 339.8594 317.7346 296.3680	Table 5), Watts Mar Apr May Jun Jul Jan Feb Mar Apr May Jun Jul Jan Feb Mar Apr May Jun Jul Jan Feb Mar Apr May Jun Jul Jan 120.1737 120.1737 120.1737 120.1737 120.1737 120.1737 Jalculated in Appendix L, equation L9 or L9a), also see Table 5 5 5.0566 215.2674 209.6961 197.8355 182.8636 168.7921 159.3915 Culated in Appendix L, equation L15 or L15a), also see Table 5 5.0174 35.0174	Table 5), Watts Mar Apr May Jun Jul Aug Jan Feb Mar Apr May Jun Jul Aug Jan Feb Mar Apr May Jun Jul Aug Jon 1737 120.1737 120.1737 120.1737 120.1737 120.1737 120.1737 alculated in Appendix L, equation L9 or L9a), also see Table 5 5 5.0174 35.0174 35.0174 159.3915 157.1806 lculated in Appendix L, equation L15 or L15a), also see Table 5 5 5.0174 35	Table 5), Watts Mar Apr May Jun Jul Aug Sep Jan Feb Mar Apr May Jun Jul Aug Sep Jan Feb Mar Apr May Jun Jul Aug Sep Jon 1737 120.	Table 5), Watts Mar Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct Jon 1737 120.1737	Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Jon 1737 120.1737	Table 5), Watts Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jon 1737 120.1737

6. Solar gains

[Jan]		Area m2		Solar flux g Table 6a Specific data W/m2 or Table 6b		FF Specific data or Table 6c		Access factor Table 6d		Gains W			
North West			2.8600 11.5500		10.6334 19.6403		0.6300 0.6300	0.6300 0.7000 0.6300 0.7000		0.7700 0.7700		9.2941 69.3268	(74) (80)
Solar gains Total gains	78.6209 456.6865	153.3795 528.8361	253.5247 615.2071	374.2119 714.0713	464.5036 782.2381	478.5617 774.9298	454.3230 737.2010	385.9741 675.3493	296.0453 596.9216	182.0649 504.9727	97.9079 446.0329	64.7590 431.8602	(83) (84)

7. Mean inter	nal temperat	ure (heating	g season)									
Temperature d	uring heatin	g periods in	n the living	g area from	Table 9, Th	11 (C)						21.0000 (85)
Utilisation f	actor for ga	ins for liv	ing area, n	il,m (see T	able 9a)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	63.3516	63.5296	63.7050	64.5421	64.7011	65.4520	65.4520	65.5930	65.1607	64.7011	64.3802	64.0480
alpha	5.2234	5.2353	5.2470	5.3028	5.3134	5.3635	5.3635	5.3729	5.3440	5.3134	5.2920	5.2699
util living a	rea											
	0.9981	0.9956	0.9860	0.9460	0.8341	0.6457	0.4822	0.5445	0.8193	0.9747	0.9960	0.9986 (86)
MIT	19.8252	19.9787	20.2472	20.5958	20.8564	20.9722	20.9951	20.9910	20.9044	20.5456	20.1223	19.8009 (87)
Th 2	20.0040	20.0065	20.0089	20.0205	20.0227	20.0328	20.0328	20.0347	20.0289	20.0227	20.0183	20.0137 (88)
util rest of 3	house											
	0.9975	0.9941	0.9811	0.9271	0.7829	0.5601	0.3791	0.4358	0.7455	0.9624	0.9944	0.9981 (89)
MIT 2	18.4345	18.6602	19.0511	19.5510	19.8861	20.0150	20.0310	20.0311	19.9536	19.4923	18.8791	18.4060 (90)
Living area f	raction								fLA =	Living area	/ (4) =	0.3519 (91)
MIT	18.9239	19.1243	19.4721	19.9187	20.2276	20.3519	20.3703	20.3689	20.2882	19.8630	19.3166	18.8969 (92)
Temperature a	djustment											0.0000
adjusted MIT	18.9239	19.1243	19.4721	19.9187	20.2276	20.3519	20.3703	20.3689	20.2882	19.8630	19.3166	18.8969 (93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisation	0.9965	0.9922	0.9776	0.9248	0.7947	0.5894	0.4156	0.4743	0.7673	0.9598	0.9927	0.9974 (94)
Useful gains	455.0859	524.7147	601.4352	660.3774	621.6209	456.7176	306.3553	320.2879	458.0055	484.6641	442.7872	430.7182 (95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)
Heat loss rate W												
	1234.3396	1197.2420	1088.8385	912.8858	704.7628	469.9080	308.0247	323.5509	507.8192	765.5405	1014.6758	1227.0134 (97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000 (97a)
Space heating	kWh											
	579.7648	451.9383	362.6280	181.8060	61.8576	0.0000	0.0000	0.0000	0.0000	208.9721	411.7598	592.4436 (98)
Space heating												2851.1702 (98)
Space heating per m2 (98) / (4) = 3										37.0282 (99)		

8c. Space cooling requirement Not applicable

9a. Energy requirements - Individual heating systems, including micro-CHP Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s)

Design SAP

elmhurst energy

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating system, % Space heating requirement 30												93.4000 (206) 0.0000 (208) 3052.6448 (211)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Space heating	requirement											
Conce beating	5/9./648	451.9383	362.6280	181.8060	61.85/6	0.0000	0.0000	0.0000	0.0000	208.9721	411./598	592.4436 (98)
space nearing	93.4000	93.4000	93.4000	93.4000	93.4000	0.0000	0.0000	0.0000	0.0000	93.4000	93.4000	93.4000 (210)
Space heating	fuel (main h	eating sys	stem)									
	620.7332	483.8740	388.2527	194.6531	66.2287	0.0000	0.0000	0.0000	0.0000	223.7388	440.8563	634.3079 (211)
Water heating	requirement											
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (215)
Wator boating												
Water heating	requirement											
nater neatring	199.8652	174.7702	181.8371	161.2803	156.1478	137.5263	131.7607	146.8823	148.5044	169.1019	180.5129	195.1667 (64)
Efficiency of	water heater	:										80.3000 (216)
(217)m	87.5762	87.3366	86.7557	85.3533	82.9290	80.3000	80.3000	80.3000	80.3000	85.5852	87.0625	87.6676 (217)
Fuel for wate	er heating, kW	Wh/month	200 5069	199 0561	100 2011	171 2656	164 0955	192 0160	19/ 0370	107 5020	207 2272	222 6211 (210)
Water heating	fuel used	200.1111	209.3900	100.9301	100.2911	1/1.2000	104.0000	102.9109	104.9570	197.3030	201.3372	2345 9200 (219)
Annual totals	kWh/vear											
Space heating	fuel - main	system										3052.6448 (211)
Space heating	fuel - secon	dary										0.0000 (215)
Distantation 6		E										
Electricity I	or pumps and	Ians:										
centrar ne	acing pump											30.0000 (230c) 45.0000 (230c)
Total electri	city for the	above kWh	h/wear									75 0000 (231)
Flectricity f	or lighting (calculate	d in Annend:	ix T.)								340 5986 (232)
Total deliver	ed energy for	all uses	a in Appena.	IX D)								5814.1634 (238)
												,
12a Cambon d	ionido omioni	ono Todá	inidual beat	ing quater	including	ni ana CUD		-				
iza. Carbon d	LUXIGE EMISSI	.ons - indi	iviqual neat	Ling systems	THCINGING :	MIGTO-CHP						
								Enomers	Emica	ion footon		Emicaciona

	Energy	Emission factor	Emissions	
	kWh/year	kg CO2/kWh	kg CO2/year	
Space heating - main system 1	3052.6448	0.2160	659.3713	(261)
Space heating - secondary	0.0000	0.0000	0.0000	(263)
Water heating (other fuel)	2345.9200	0.2160	506.7187	(264)
Space and water heating			1166.0900	(265)
Pumps and fans	75.0000	0.5190	38.9250	(267)
Energy for lighting	340.5986	0.5190	176.7707	(268)
Total CO2, kg/m2/year			1381.7857	(272)
Emissions per m2 for space and water heating			15.1440	(272a)
Fuel factor (mains gas)			1.0000	
Emissions per m2 for lighting			2.2957	(272b)
Emissions per m2 for pumps and fans			0.5055	(272c)
Target Carbon Dioxide Emission Rate (TER) = $(15.1440 \times 1.00) + 2.2957 + 0.5055$, rounded to	2 d.p.		17.9500	(273)

