REPORT ON A SITE INVESTIGATION

Site

152-154 QUEENS ROAD, WIMBLEDON, GREATER LONDON SW19 8LX

Client

SANFORD DEVELOPMENTS (WIMBLEDON) LTD

Report Ref 22/12498/KJC Issued JANUARY 2023

ALBURY S.I. LTD

Geotechnical and Environmental Consultants

Miltons Yard, Petworth Road, Witley, Surrey GU8 5LH

> T: 01428 684 836 info@alburysi.co.uk www.alburysi.co.uk

ALBURY S.I. LTD

	DOCUMEN	T CONTROL						
Report Title	Report on a Site Inves	tigation						
Contract	Queens Road, Wimble	edon						
Report Reference	22/12498/KJC							
Client	Sanford Development	s (Wimbledo	on) Ltd					
Prepared by	K J Clark BSc Hons Director		\bigcirc	XQ				
Approved by	G C D Owens BSc MSc F Director	GS MIEnvSc	lit	[] []				
Revision No.	Status	Date of Issue	e (Final Issue Check				
0	Final	05/01/2023						

Albury S.I. Limited has prepared this Report with reasonable skill and care for the sole use of the Client in accordance with the terms and conditions of the contract under which our services were provided. No duty of care and no contractual obligation (whether expressed or implied) is owed to any third party. Should any third party rely on this Report then they do so at their own risk and Albury S.I. Limited shall have no liability whether in contract or in tort, in negligence, for breach of statutory duty or otherwise to any such party. No warranty, expressed or implied, is made as to the professional advice included in this Report or any services provided by Albury S.I. Limited.

This Report is prepared for the specific purpose stated and in relation to the development proposals or usage indicated to Albury S.I. Limited at the time of preparation. The recommendations should not be used for adjacent schemes and may not be appropriate for alternative proposals.

The recommendations made and opinions expressed in this Report are based on the strata conditions revealed by the fieldworks as indicated on the exploratory records, together with an assessment of the data from in situ and laboratory tests. No liability can be accepted for conditions which have not been revealed by the fieldworks, for example, between exploratory positions. While this Report may offer opinions on the possible configuration of strata, both between the excavations and below the maximum depth achieved by the investigation, these comments are for guidance only and no liability can be accepted for their accuracy. The data obtained relate to the conditions which are relevant at the time of the investigation.

The groundwater observations entered on exploratory records are those noted at the time of the investigation. The normal rate of progress does not usually permit the recording of any equilibrium water level for any one water strike. It should be noted that groundwater levels are prone to seasonal variation and to changes in local drainage conditions. The word 'none' indicates that groundwater was sealed off by the borehole casing or that no water was observed in the exploratory hole upon completion.

This Report is the Copyright of Albury S.I. Limited

REPORT REF: 22/12498/KJC CONTRACT: QUEENS ROAD, WIMBLEDON

TABLE OF CONTENTS

1	INT	RODUCTION	1
2	FIE	LDWORKS	1
	2.1	Site Works	1
3	GR	OUND CONDITIONS	2
	3.1	Geology	2
	3.2	Stratigraphy	2
	3.3	Groundwater	3
	3.4	In Situ Testing	3
4	LAE	BORATORY TESTING	3
	4.1	Water Content	3
	4.2	Index Properties	3
	4.3	Chemical Testing – Soluble Sulphates & pH	4
	4.4	Geochemical Testing	4
5	GE	OTECHNICAL DISCUSSION	4
	5.1	Foundations	
	5.2	Stability of Excavations	5
	5.3	Groundwater	
	5.4	Drainage	5
	5.5	Ground Floor Slabs	
	5.6	Buried Concrete	6
6	GR	OUND CONTAMINATION	
	6.1	Human Health	6
	6.2	Preliminary Waste Assessment	7
R	FEREN	ICES	
LI	ST OF A	ABBREVIATIONS	

FIGURES

- 1 Site Layout Plan
- 2 Proposed Layout

APPENDICES

- 1 Exploratory Records
- 2 Laboratory Test Results
- 3 Desiccation
- 4 Waste

1 INTRODUCTION

The Client proposes to construct a small terrace of two storey dwellings following the demolition of the existing structures at 152-154 Queens Road, Wimbledon ("the site"). Consequently, a site investigation has been undertaken in order to ascertain the nature and engineering properties of the soils underlying the proposed development site and to obtain data which will assist in the formulation of a safe and economical foundation solution. In addition, a geo-environmental appraisal of the site has also been carried out. At the time of the site works, the site was in use as an MOT and motor repairs service centre with the existing buildings still present.

The programme of this investigation comprised the construction of five boreholes using handheld window sampling techniques. Diamond coring of the existing surface concrete was completed at a number of the investigatory locations. During this work samples were recovered for further examination and laboratory testing. In addition, a number of in situ hand shear vane tests were also performed. This report describes the work undertaken, presents the information obtained and discusses the ground conditions with respect to foundation design, construction and potential contamination.

2 FIELDWORKS

2.1 Site Works

The boreholes were constructed on 29th November 2022 at locations as shown on the site plan, drawing no. 22/12498/1, which is presented as Figure 1. The exploratory positions were located in order to provide adequate site coverage taking in to account site constraints and the proposed layout. Diamond coring of the surface concrete was completed at the location of boreholes 1 and 4 to penetrate the concrete slabs at these positions within the existing buildings.

The depths and descriptions of the strata encountered in the boreholes are given on the records which comprise Appendix 1 to this report. These records note the depths at which samples were taken, the results of in situ tests and the groundwater observations noted at the time of the fieldworks.

Photographs which give a general impression of the site at the time of the fieldworks are included below.

3 GROUND CONDITIONS

3.1 Geology

Reference has been made to the published 1:50,000 scale British Geological Survey (BGS) mapping of the area. The site is indicated as being underlain by the London Clay Formation of Eocene age. Superficial deposits comprising Head of recent or Quaternary age are noted to overlie the London Clay Formation to the north and south.

3.2 Stratigraphy

Consideration of the borehole records indicates that concrete or macadam are present at surface at the investigatory locations which extend to depths of between 0.1m and 0.2m. Made ground varying from dark grey clinker/ash/sand to dark grey/brown silty clay were encountered upon penetration of the surface layer and were shown to extend to depths of between 0.6m and 0.9m.

Grey organic silty clay which oxidises to a brown colouration on exposure was observed beneath the made ground in borehole 3 and extends to 1.50m. The geological origin of this soil is unclear.

Brown silty clay with grey veining, typical of the weathered zone of the London Clay Formation, was present below the made ground and organic soils and was proved to the full depth of this investigation at 3.1m and 4.1m.

3.3 Groundwater

During the construction of the exploratory positions groundwater strikes were encountered at 2.6m and 3m, with the exception of borehole 1 which remained dry throughout. Short-term standing water levels upon completion of boreholes 2 to 5 of between 2.6m and 3.5m were recorded.

3.4 In Situ Testing

Hand shear vane tests were conducted using the Geonor Shear Vane test equipment. Shear strengths corrected for plasticity effects ranging from 70kPa to 205kPa have been established, which represent a firm to very stiff in situ condition for a purely cohesive soil.

During the sampling of the near surface soils measurement of soil vapours [VOC] was carried out on the samples of the soils taken using a PhoCheck Tiger PID meter. The composite sample is placed within a sealed plastic bag with a limited air space (headspace) which allows vapours to enter following agitation of the sample bag. The headspace is then measured using the PID meter and the results recorded in ppm as an indicative total VOC. The maximum TVOC recorded during this work was 6.5ppm, which is typical of normal background concentrations. Moreover, no visual or olfactory evidence of contamination was apparent during the sampling.

4 LABORATORY TESTING

A programme of laboratory testing has been undertaken and the results are presented as Appendix 2 to this report. The geotechnical soil testing was undertaken by Albury S.I. Ltd, whilst representative samples were submitted for geochemical testing at the UKAS accredited laboratories operated by i2 Analytical Ltd. Each type of test is summarised below and the results obtained have been used to assist in the formulation of the discussion.

4.1 Water Content

The water contents of samples of the soils encountered at this site have been determined. Water contents within the range 25.7% to 37.0% have been recorded.

4.2 Index Properties

The liquid and plastic limits of samples of the clay soils have been determined. The results of this work indicate that the samples tested can generally be described as inorganic clays of high to very high plasticity and of medium to high shrinkage potential.

4.3 Chemical Testing – Soluble Sulphates & pH

Samples of the soils and groundwater encountered at this site have been subjected to chemical analyses in order to determine their soluble sulphate contents and pH values. Under the conditions of this work low to moderate concentrations of soluble sulphate have been recorded in association with near neutral pH values.

4.4 Geochemical Testing

Selected samples of the made ground have been submitted to the UKAS accredited laboratories operated by i2 Analytical Ltd. The testing comprises a suite of typical inorganic and organic priority contaminants including metals, PAH, TPH CWG and an asbestos screen.

5 GEOTECHNICAL DISCUSSION

5.1 Foundations

The Client proposes to construct a short terrace of 3 no two storey houses following demolition of the existing motor garage. The proposed layout is shown in Figure 2. At the time of the preparation of this report the anticipated structural loads were not known.

It cannot be recommended that major structural foundations be located within the made ground revealed by this investigation. Soils of this origin are frequently present in a weak and variable condition such that unacceptable settlement could occur even under the action of light loading intensities. Therefore, it will be necessary to continue foundation excavations through these undesirable materials where they are of less than 1.00m in thickness to this minimum depth in order to avoid that zone of soil which is subject to normal seasonal moisture variation or frost action. The above precautions need not necessarily be applied to light ancillary structures, which will be formed structurally discrete from the main development and in which a greater degree of settlement can be tolerated.

It is known that a number of trees are present in the vicinity to the north of the proposed structures. A discussion of the causes, effects and classification of desiccation in clay soils is included in Appendix 3 to this report. Consideration of the results of the laboratory testing indicates that moisture deficiency is present within the near surface soils at depth of 1.5m and 2m. Hence, foundations will have to be located within moisture stable soils at a depth of 2.5m. Moreover, NHBC criteria should be adopted in the design of foundations on the basis that the soils are of high shrinkage potential.

Interpretation of the data derived from this investigation indicates that strip or spread foundations, constructed in accordance with the above recommendation, can be designed to accept a maximum increase in load of 150kPa. At this loading intensity a factor of safety of 3 against general shear failure will be operative. Moreover, settlements should remain within tolerable limits for the type of structure proposed. These movements are likely to occur over an extended period of time due to the highly plastic nature of the underlying soils.

Alternatively, consideration could be given to piles. The design of piles lies outside the scope of this report as it is dependent upon the type of pile employed, its size and bearing capacity. Therefore, when the loadings are known it will be sensible to seek the advice of suitably experienced specialist piling contractors in order to provide a satisfactory solution to the problem. The information given in Appendices 1 and 2 of this report may be used in pile design. It is likely that a deep borehole will be required in order to provide suitable pile design parameters.

5.2 Stability of Excavations

Excavations of less than 1.00m depth should not require temporary support to their sides. However, as foundation excavations will have to be extended below this level, adequate temporary support or shoring should be provided in order to comply with current statutory safety regulations and to maintain the stability of the excavation sides.

5.3 Groundwater

The groundwater observations noted at the time of the fieldworks suggest that this phenomenon should not represent an engineering problem. It is considered that only limited quantities of groundwater are likely to be encountered which can be dealt with by constructing sumps from which the water can be pumped.

It should be appreciated that the London Clay Formation will deteriorate rapidly in the presence of groundwater in the unconfined state. Where this situation is likely to arise it would be advisable to apply a blinding layer of leanmix concrete to the bases of excavations.

5.4 Drainage

The near surface drainage characteristics of the underlying soils have not been specifically considered as part of this investigation. However, the presence of the underlying London Clay Formation, which is highly plastic, is unlikely to act as a suitable drainage medium. Hence, alternative means of disposal of surface water run-off will need to be considered.

5.5 Ground Floor Slabs

The thickness of made ground revealed by this investigation, commonly in excess of 0.60m, and the presence of moisture deficiency infers that a system of fully suspended floor slabs should be incorporated within the proposed structures in accordance with NHBC criteria.

5.6 Buried Concrete

The information obtained from this investigation has been compared with the criteria proposed in BRE Special Digest 1, 2005 Edition, Concrete in Aggressive Ground. Using the information in Table C1 of this publication the Aggressive Chemical Environment for Concrete Classification (ACEC) is AC-2, which coincides with a Design Sulphate Class DS-2. The ACEC Class above can be used to determine the Design Chemical Class for concrete for general cast-in-situ use as required Part D of the Digest.

6 **GROUND CONTAMINATION**

6.1 Human Health

A generic assessment of the chronic or long-term risk to human health from soil contamination has been made using the available generic screening criteria. The screening values include the Category 4 Screening Levels [C4SLs] (DEFRA, 2014) and Suitable for Use Levels [S4ULs] (LQM/CIEH, 2014) derived using the CLEA software. It should be appreciated that these do not consider the short-term or acute risks, such as to construction workers or SI personnel.

The results have been compared against the available GAC for the Residential land-use category. A study of the data reveals elevated levels of the PAH species benzo(a)pyrene and dibenz(a,h)anthracene in boreholes 2 to 5. Beryllium and lead were also noted in boreholes 1, 2 and 4. The beryllium level was 6.8mg/kg compared to the S4UL GAC of 1.7mg/kg. The reported lead levels were 280mg/kg and 320mg/kg, compared to the C4SL GAC of 200mg/kg.

Therefore, it is recommended that remedial measures are implemented in proposed areas of soft landscaping. It is recommended that 600mm of soil is removed and replaced by clean topsoil and subsoil. It would be prudent to incorporate a high visibility membrane at the base of the imported soil. A formal remedial method statement should be anticipated as part of this redevelopment for agreement with the Local Authority and if relevant, the warranty provider.

6.2 Preliminary Waste Assessment

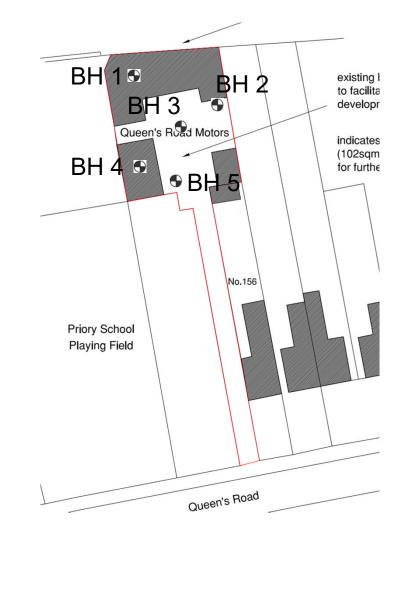
It is likely that, if excavated soils cannot be re-used or retained on site, these surplus materials will require off-site disposal. It may be possible to divert the unwanted material to a soil treatment hub where it can be recycled. Where material cannot be re-used or recycled then disposal at a licensed landfill site can be considered. It will then be necessary to classify the spoil as inert, non-hazardous or hazardous. A discussion of the current regime for the classification and treatment of waste soils is included in Appendix 4.

An initial assessment of the geochemical results obtained from this investigation has been carried out to provide a preliminary classification of the surplus materials. The output from the HazWaste Online assessment is located in Appendix 4. Based on the output waste soil arisings from this site have been tentatively identified as being non-hazardous waste.

This assessment is preliminary and based upon the information obtained from the investigation. Where made ground is excavated then these materials should be stockpiled and segregated. Further sampling, testing and characterisation to accurately classify waste soil arisings may be required. It should be appreciated that it is the responsibility of the waste producer to sufficiently characterise their waste. Moreover, the agreement of the waste acceptor should be sought.

If hazardous material is to be disposed at a licensed waste landfill site, then supplementary waste acceptance criteria [WAC] testing may also be required. Confirmation should be sought from the relevant licensed waste handler or landfill operator.

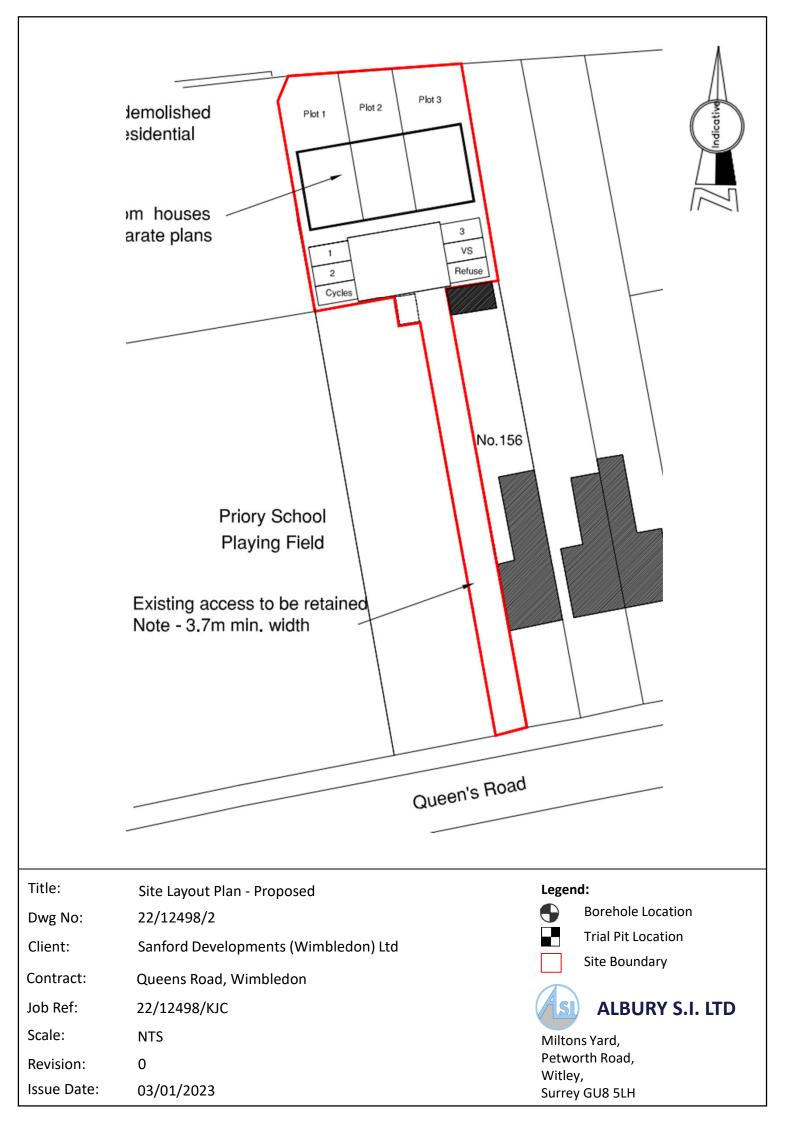
REFERENCES


- British Standards (2016). Methods of test for soils for civil engineering purposes, BS 1377-1:2016. British Standard Institution, London.
- British Standards (2011). Investigation of potentially contaminated sites. Code of Practice. BS 10175+A2:2017. *British Standard Institution, London.*
- British Standards (2013). Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs). BS 8576. *British Standard Institution, London.*
- British Standards (2015). Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. BS 8485+A1:2019. *British Standard Institution, London.*
- British Standards (2015). Code of practice for ground investigations, BS 5930:2015. British Standard Institution, London.
- Building Research Establishment [BRE] (2004). Cover systems for land regeneration: Thickness of cover systems for contaminated land (BR 465). BRE Watford, UK.
- Building Research Establishment [BRE] (2005). Concrete in aggressive ground: Special Digest 1 (3rd Ed.). BRE Watford, UK.
- Building Research Establishment [BRE] (2015). *Guidance on protective measures for new buildings.* (*BR 212*). BRE Watford, UK.
- Contaminated land: Applications in Real Environments. (2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Final Project Report.
- Chartered Institute of Environmental Health and Contaminated Land: Applications in Real Environments (2008). *The Guidance on Comparing Soil Contamination Data with Critical Concentration*. London, UK.
- Environment Agency (2004). *Model Procedures for the Management of Contaminated Land.* Contaminated Land Report (CLR) 11, SC02000028, Environment Agency, Bristol, UK.
- Environment Agency (2015). Interpretation of the definition and classification of hazardous waste. 1st edition. Technical Guidance WM3. *Environment Agency, UK.*
- Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. (2015). *The LQM/CIEH* S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham. Publication Number S4UL3073.
- Stroud, M. A. (1974). The standard penetration test in insensitive clays and soft rocks. *Proceedings of the European Symposium on Penetration Testing, Stockholm, 2,* 367-375.

AOD	-	Above Ordnance Datum
ACM	-	Asbestos-containing Material
AST	-	Above-ground Storage Tank
BGS	-	British Geological Survey
вн	-	Borehole
BRE	-	Building Research Establishment
BSI	-	British Standards Institution
BS	-	British Standard
C4SL	-	Category Four Screening Level
CIRIA	-	Construction Industry Research and Information Association
СР	-	Cable Percussive
DPH	-	Dynamic Probing Heavy
DPSH	-	Dynamic Probing Super Heavy
EA	-	Environment Agency
GAC	-	Generic Assessment Criteria
LL	-	Liquid Limit
mAOD	-	Metres Above Ordnance Datum
mBGL	-	Metres Below Ground Level
mOD	-	Metres Ordnance Datum
OS	-	Ordnance Survey
PAH	-	Polycyclic Aromatic Hydrocarbons
РСВ	-	Polychlorinated Biphenyl
PID	-	Photo Ionisation Detector
PL	-	Plastic Limit
PSD	-	Particle Size Distribution
SGV	-	Soil Guideline Value
SOM	-	Soil Organic Matter
SPT	-	Standard Penetration Test
SPZ	-	Source Protection Zone
SVOC	-	Semi-volatile Organic Compounds
ТРН	-	Total Petroleum Hydrocarbon
UST	-	Underground Storage Tank
UXB	-	Unexploded Bombs
UXO	-	Unexploded Ordnance
VOC	-	Volatile Organic Compound

FIGURE 1

SITE LAYOUT PLAN



Title:	Site Layout Plan	Legend:
Dwg No:	22/12498/1	Borehole Location
Client:	Sanford Developments (Wimbledon) Ltd	Trial Pit Location
		Site Boundary
Contract:	Queens Road, Wimbledon	
Job Ref:	22/12498/КЈС	ALBURY S.I. LTD
Scale:	NTS	Miltons Yard,
Revision:	0	Petworth Road,
Issue Date:	03/01/2023	Witley, Surrey GU8 5LH

FIGURE 2

PROPOSED LAYOUT

APPENDIX 1

EXPLORATORY RECORDS

Ası	ALBUR Miltons Yard			ey, Surrey G	iu8 5lh		BOREHOLE	1
Contract		Queens F	Road, Wimb	ledon		Report Ref	22/12498/KJC	
Client		Sanford [Developmer	nts (Wimble	edon) Ltd		Date	29/11/2022
Site Addro	ess	152-154	Queens Roa	ad, Wimble	don, Greater	London SW19 8LX	Ground Level	
Type of ex		Window			Water lev	vel after completion, m	dry	
Water s	trikes, m		Dimensions,	, m			excavation, m	
1 2	none	Diameter	0.06			y easy derate GL-3.10	Difficult	
					IVIO	derate GL-3.10	Very hard	
Remarks No visual	or olfactory e	evidence of	contaminat	ion noted.				
Samples	s or tests	Shear	PID TVOC	Depth				
Туре	Depth, m	Strength kPa	ppm	m	Legend		Strata Description	
						MADE GROUND (concre	ete)	
D	0.20		0.6	0.15		MADE GROUND (dark g	rey CLINKER/ASH/SAN	ID)
D	0.50		0.4	0.40		MADE GROUND (grey s	andy CLAY with gravel	and brick
				-		fragments)		
				0.90	$ \times$ \times			
D	1.00	70	0		— — ×	Firm orange-brown/bro	own silty CLAY	
				1.30	— × —			
D	1.50	100		-	×	Stiff brown silty CLAY w	ith grey veining	
				-	×			
_				-	×			
D	2.00	120			_ ×			
				-	×			
D	2.50			-	×			
				-	×			
D	3.00			-				
				3.10		END OF BOREHOLE		
				-				
					_			

S	ALBUR Miltons Yard			ey, Surrey	GU8	3 5LH		BOREHOLE	2		
Contract		Queens F	Road, Wimb	ledon		Report Ref	22/12498/KJC				
Client		Sanford [Developmer	nts (Wimb	ledo	on) Ltd		Date	29/11/2022		
Site Addre	ess	152-154	Queens Roa	ad, Wimble	edor	n, Greater I	ondon SW19 8LX	Ground Level			
Type of exc		Window				Water lev	el after completion, m	3.00			
Water st	trikes, m		Dimensions,	m			Ease	of excavation, m			
1	3.00	Diameter	0.06				y easy	Difficult			
2 Moderate GL-3.10 Very hard Remarks No visual or olfactory evidence of contamination noted.											
Samples	s or tests	Shear	PID TVOC	Depth		Logand		Chuche Description			
Туре	Depth, m	Strength kPa	ppm	m		Legend		Strata Description			
,,	. ,					$\times \times$	MADE GROUND (rein	orced concrete)			
D	0.25		0.1	0.20		${}$	MADE GROUND (dark fragments)	grey clayey SAND with	gravel and brick		
D	0.50		0.1			\times	naginentaj				
				0.80		\times	Stiff orange-brown/br	own silty CLAV			
D	1.00	85	0.4			— × × —	Still Orange-brown/br				
D	1.50	155		1.40		×	Very stiff brown silty (CLAY			
D	2.00	180				— × × —					
D	2.50			2.40		— × × — ×	Brown silty CLAY with	grey veining			
D	3.00			3.10		× — — ×	Calcareous nodule @2 END OF BOREHOLE	?m			

(ISI)	ALBUR Miltons Yard			ey, Surrey (GU8 5LH	BOREHOLE 3					
Contract		Queens F	Road, Wimb	ledon	Report Ref	22/12498/KJC					
Client		Sanford [Developme	nts (Wimbl	edon) Ltd		Date	29/11/2022			
Site Addro	ess	152-154	Queens Roa	ad, Wimble	don, Greater	London SW19 8LX	Ground Level				
Type of exe		Window			Water le	vel after completion, m	2.60				
Water s	trikes, m		Dimensions,	m		Ease of	excavation, m				
1	3.00	Diameter	0.06			y easy	Difficult	GL-4.10			
2 <i>Remarks</i> No visual	or olfactory e	evidence of	contaminat	ion noted.	INIO	derate	Very hard				
Samples	s or tests	Shear Strength	PID TVOC	Depth	Legend		Strata Description				
Туре	Depth, m	kPa	ppm	m	Legenu		Strata Description				
				0.10		MADE GROUND (macad	lam)				
D D	0.20 0.30		6.5 2.7	0.30	$- \times $	MADE GROUND (grey S	AND with gravel and	brick fragments)			
D	0.50		2.7	0.30		MADE GROUND (grey c	layey SAND AND GRA	VEL with brick and			
D	0.50		1.1	0.50		ash fragments) MADE GROUND (dark g	rey/brown silty CLAY)			
				0.80	-						
				0.00		Stiff grey organic silty C	LAY; oxidises to a bro	wn colouration on			
D	1.00	85	0		×	exposure					
					×						
-	4.50	160		4.50	×						
D	1.50	160		1.50	— × —	Very stiff brown silty CL	AY				
					×						
D	2.00	185									
					×						
				2.30		Brown silty CLAY with g	rey veining				
D	2.50				×						
D	3.00										
D	3.50				_						
D	4.00				×						
	1.00			4.10		END OF BOREHOLE					
W	(2.60)				—						

	ALBUR Miltons Yard			ey, Surrey	GU8	5LH		BOREHOLE	4
Contract		Queens F	Road, Wimb	ledon		Report Ref	22/12498/KJC		
Client		Sanford [Developmei	nts (Wimbl	ledo	on) Ltd		Date	29/11/2022
Site Addro	ess	152-154	Queens Roa	ad, Wimble	edor	n, Greater I	ondon SW19 8LX	Ground Level	
Type of exe		Window				Water lev	el after completion, m	2.80	
Water s	trikes, m		Dimensions,	m			Ease of	excavation, m	
1	2.60	Diameter	0.06				/ easy	Difficult	
2						Moo	derate GL-3.10	Very hard	
Remarks No visual	or olfactory e	evidence of	contaminat	ion noted.					
Samples	s or tests	Shear	PID TVOC	Depth		Logond		Strata Description	
Туре	Depth, m	Strength kPa	ppm	m		Legend		Strata Description	
						$\times \times$	MADE GROUND (concre	ete)	
D	0.25		0.1	0.20		\sim	MADE GROUND (dark b brick fragments)	rown/grey sandy CLA	Y with gravel and
D	0.50		0			\searrow	Drick fragments)		
D	0.70		0	0.60		$\sim \sim$	Orange-brown silty CLA	Y	
						— ×			
D	1.00	75	0	1.00		×			
							Stiff to very stiff brown	silty CLAY	
						— ×			
D	1.50	180				× —			
						— ×			
D	2.00	205				× —			
	2.00	205				— ×			
						× —			
D	2.50					— ×			
						× —			
D	3.00					— × × —			
				3.10		<u> </u>	END OF BOREHOLE		
					H				
					\square				
					\mathbb{H}				

Ası	ALBUR Miltons Yard			ey, Surrey G	iu8 5lh			BOREHOLE	5
Contract		Queens F	Road, Wimb	ledon		Report Ref	22/12498/KJC		
Client		Sanford I	Developme	nts (Wimble	edon) Ltd		Date	29/11/2022	
Site Addre	ess	152-154	Queens Roa	ad, Wimble	don, Greater	London SW19 8I	LX	Ground Level	
Type of exe		Window			Water le	vel after completi		3.50	
Water s	trikes, m		Dimensions,	m			Ease of ex	cavation, m	
1	3.00	Diameter	0.06			y easy . GL	-1.00,	Difficult	1.00-1.40
2 <i>Remarks</i> No visual	or olfactory e	evidence of	contaminat	ion noted.	Мс	nerate	40-4.10	Very hard	
-	s or tests	Shear Strength	PID TVOC	Depth	Legend		Str	ata Description	
Туре	Depth, m	kPa	ppm	m					
D D D	0.20 0.30 0.50		0.1 0.2 0.2	0.15 0.25			ND (light bro ND (dark bro	wn silty SAND with wn clayey SAND w	gravel and roots) ith gravel and brick;
				0.60		Stiff to very st			
D	0.75		0.1	F	$- \times$				
D	1.00	150	0.1	-					
D	1.50	170		-					
D	2.00	190		2.20	×	Brown silty Cl	LAY with grey	y veining	
D	2.50			-	× — × — ×				
D	3.00			-					
D	3.50			-	× — ×				
D	4.00			4.10		END OF BORE	EHOLE		

APPENDIX 2

LABORATORY TEST RESULTS

INDEX PROPERTIES AND WATER CONTENTS

BS 1377 : Part 2 : 1990

Report I	Ref	22/12498/KJC	Contract		Queens Ro	ad, Wimbled	on			
BH/TP No.	Depth m	Sample Description	Water Content W %	Liquid Limit W _L %	Plastic Limit W _P %	Plasticity Index IP %	% Passing 425 Micron Sieve	Corrected Plasticity Index IPc %	Soil Classification	Remarks
BH 1	1.00	Orange-brown/brown silty clay	37.0	82	28	54	100	54	cv	
	1.50	Brown silty clay with grey veining	30.4							
	2.00	Brown silty clay with grey veining	27.7	59	24	35	100	35	СН	
	2.50	Brown silty clay with grey veining	28.5							
	3.00	Brown silty clay with grey veining	28.9							
BH 2	1.00	Orange-brown/brown silty clay	29.7	59	22	37	100	37	СН	
	1.50	Brown silty clay	28.1							
	2.00	Brown silty clay	26.5	53	22	31	98	30	СН	
	2.50	Brown silty clay with grey veining	28.2							
	3.00	Brown silty clay with grey veining	29.4							
BH 3	1.00	Grey organic silty clay; oxidises to a brown colouration on exposure	33.8	78	26	52	100	52	cv	
KEY: Soil Type: Plasticity:		C - Clay M - Silt L - Low I - Inter	mediate		O - Organic H - High	·	NP - Non Plast V - Very High	ic	E - Extremely H	gh

ALBURY S.I. LTD Miltons Yard, Petworth Road, Witley, Surrey GU8 5LH

INDEX PROPERTIES AND WATER CONTENTS

BS 1377 : Part 2 : 1990

Report F	Ref	22/12498/KJC	Contract		Queens Ro	ad, Wimbled	on		Continua	tion Sheet 1
BH/TP No.	Depth m	Sample Description	Water Content W %	Liquid Limit W _L %	Plastic Limit W _P %	Plasticity Index IP %	% Passing 425 Micron Sieve	Corrected Plasticity Index IPc %	Soil Classification	Remarks
BH 3	1.50	Brown silty clay	27.2							
	2.00	Brown silty clay	25.7	53	23	30	100	30	СН	
	2.50	Brown silty clay with grey veining	33.9							
	3.00	Brown silty clay with grey veining	29.5							
BH 4	1.00	Brown silty clay	33.8	79	28	51	100	51	CV	
	1.50	Brown silty clay	25.7							
	2.00	Brown silty clay	25.7	55	23	32	100	32	СН	
	2.50	Brown silty clay	30.5							
	3.00	Brown silty clay	35.1							
BH 5	1.00	Brown silty clay	38.5							
	1.50	Brown silty clay	26.6	61	24	37	100	37	сн	
KEY:	Soil Type: C - Clay M - Silt Plasticity: L - Low I - Inter		t ermediate	I	O - Organic H - High	I	NP - Non Plast V - Very High	ic	E - Extremely H	igh

ALBURY S.I. LTD Miltons Yard, Petworth Road, Witley, Surrey GU8 5LH

INDEX PROPERTIES AND WATER CONTENTS

BS 1377 : Part 2 : 1990

Report I	Ref	22/12498/KJC	Contract		Queens Ro	ad, Wimbled	on		Continua	tion Sheet 2
BH/TP No.	Depth m	Sample Description	Water Content W %	Liquid Limit W _L %	Plastic Limit W _P %	Plasticity Index IP %	% Passing 425 Micron Sieve	Corrected Plasticity Index IPc %	Soil Classification	Remarks
BH 5	2.00	Brown silty clay	28.2							
	2.50	Brown silty clay with grey veining	29.6							
	3.00	Brown silty clay with grey veining	30.1							
KEY:	Soil Type:	C - Clay M - Sil	t	1	O - Organic	1	NP - Non Plast	ic	1	
	Plasticity:		rmediate		H - High		V - Very High		E - Extremely H	ligh

ALBURY S.I. LTD Miltons Yard, Petworth Road, Witley, Surrey GU8 5LH

SUMMARY OF CHEMICAL ANALYSES

Determination of Soluble Sulphate Contents of Soil and Groundwater, Organic Matter Content and pH Value

Report Ref		22/12498/KJC		Contract	Queens Road, Wimbled	lon	
вн/тр		Sample			n of Sulphates ed as SO4	рН	Organic
No.	Depth m	Soil Type	% passing 2mm sieve	2:1 Water:Soil Extract mg/l	Groundwater mg/l	Value	Content %
BH1	1.50	Clay	100	<250		7.1	
BH2	1.00	Clay	100	<250		7.1	
	2.50	Clay	100	<250		8.0	
BH3	1.50	Clay	100	<250		8.4	
	2.60	Water			1215	6.8	
BH4	1.00	Clay	100	<250		7.5	
	2.00	Clay	100	<250		8.1	
BH5	1.50	Clay	100	<250		8.2	

Keith Clark Albury SI Ltd Miltons Yard Petworth Road Witley Surrey GU8 5LH

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: keith.clark@alburysi.co.uk

Analytical Report Number : 22-10488

Project / Site name:	Queens Road Wimbledon	Samples received on:	30/11/2022
Your job number:	22 12498 KJC	Samples instructed on/ Analysis started on:	30/11/2022
Your order number:	14678	Analysis completed by:	20/12/2022
Report Issue Number:	1	Report issued on:	20/12/2022
Samples Analysed:	5 soil samples		

Durado

Signed:

Joanna Wawrzeczko Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	-	4 weeks from reporting
leachates	-	2 weeks from reporting
waters	-	2 weeks from reporting
asbestos	-	6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-10488 Project / Site name: Queens Road Wimbledon

Your Order No: 14678

Lab Sample Number				2517132	2517133	2517134	2517135	2517136
Sample Reference	1	2	3	4	5			
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.20	0.25	0.20	0.30	0.20		
Date Sampled		29/11/2022	29/11/2022	29/11/2022	29/11/2022	29/11/2022		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
	T	Ξ.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	14	9.4	18	15
Total mass of sample received	kg	0.001	NONE	0.8	0.8	0.8	0.8	0.8
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	ASE	ASE	ASE	ASE	ASE
,	1		,					
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8	8.9	8.9	8.4	10.1
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	2.4	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	11000	720	1100	700	1800
					-			
Water Soluble Sulphate as SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	4000	92	300	250	240
Equivalent)	g/l	0.00125	MCERTS	2	0.046	0.15	0.13	0.12
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	2020	46.2	150	126	120
Sulphide	mg/kg	1	MCERTS	29	24	89	11	8.4
Elemental Sulphur	mg/kg	5	MCERTS	160	< 5.0	31	< 5.0	< 5.0
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	4.3	1.3	1.4	2.5	0.6
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs		-						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.65*	0.6*	2.1*	0.27*
Acenaphthylene	mg/kg	0.05	MCERTS	0.07	3.4*	2.8*	12*	1.3*
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.19*	0.62*	0.69*	0.23*
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.51*	0.78*	2.1*	0.21*
Phenanthrene	mg/kg	0.05	MCERTS	0.37	9.6*	11*	49*	3.4*
Anthracene	mg/kg	0.05	MCERTS	0.08	3.4*	3.6*	13*	1.3*
Fluoranthene	mg/kg	0.05	MCERTS	1	38*	31*	170*	1.5
Pyrene	mg/kg	0.05	MCERTS	0.97	34*	28*	150*	16*
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.7	23*	15*	88*	10
Chrysene	mg/kg	0.05	MCERTS	0.64	18*	15	79*	10*
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.79	25*	19*	120*	13*
Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025 ISO 17025	0.38	7.4*	4.5*	40*	3*
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.61	19*	15*	91*	10*
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.39	12*	9*	56*	6*
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.08	3*	2.2*	13*	1.5*
Benzo(ghi)perylene		0.05	MCERTS	0.45	12*	9.7*	68*	6.5*
ברויבעלפווו/אבו אובווב	mg/kg	0.05	MUERIS	V. 4 3	12	5./**	00"	0.3"
Total PAH Speciated Total EPA-16 PAHs	malke	0.8	ISO 17025	6.55	212*	168*	943*	100*
Specialeu IUlai LEN-IU FAIIS	mg/kg	υ.δ	150 17025	0.00	212	100	יינדע	100

Analytical Report Number: 22-10488 Project / Site name: Queens Road Wimbledon

Your Order No: 14678

Lab Sample Number				2517132	2517133	2517134	2517135	2517136
Sample Reference	1	2	3	4	5			
Sample Number				None Supplied				
Depth (m)				0.20	0.25	0.20	0.30	0.20
Date Sampled				29/11/2022	29/11/2022	29/11/2022	29/11/2022	29/11/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-		•	_	_	_		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	26	17	12	17	8.5
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	6.8	1.1	0.77	1.5	0.57
Boron (water soluble)	mg/kg	0.2	MCERTS	6.6	0.9	1.5	0.6	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.5	0.7	0.4
Chromium (hexavalent)	mg/kg	1.2	NONE	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	22	28	19	27	18
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	28	19	27	18
Copper (aqua regia extractable)	mg/kg	1	MCERTS	120	53	39	88	30
Lead (aqua regia extractable)	mg/kg	1	MCERTS	110	280	100	320	58
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	410	210	340	250	290
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.7	0.6	< 0.3	0.6	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	64	21	15	24	12
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	72	56	38	67	31
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	140	170	110	340	91

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
p & m-xylene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
o-xylene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Analytical Report Number: 22-10488

Project / Site name: Queens Road Wimbledon Your Order No: 14678

Lab Sample Number				2517132	2517133	2517134	2517135	2517136
Sample Reference				1	2	3	4	5
Sample Number				None Supplied				
Depth (m)				0.20	0.25	0.20	0.30	0.20
Date Sampled				29/11/2022	29/11/2022	29/11/2022	29/11/2022	29/11/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)		Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH C6 - C40 _{EH_CU+HS_CU_1D_TOTAL}	mg/kg	10	NONE	33	230	320	640	130
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0	8.9*	3.2*	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	10*	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	27*	< 8.0	< 8.0	40*	< 8.0
TPH-CWG - Aliphatic >EC21 - EC40 _{EH_CU_1D_AL}	mg/kg	10	NONE	33	< 10	< 10	50	< 10
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	11	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	27	< 10	14	54	< 10
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	27	< 10	14	65	< 10
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 1.0	< 1.0	3.2	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	< 2.0	13	21	7.2	2.1
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	68	82	210	33
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	130	170	330	88
TPH-CWG - Aromatic >EC21 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	< 10	150	200	360	99
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	< 8.4	23	57	33	17
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	210	280	550	120
TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	240	330	580	140

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

*Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted and the failure justified as having no significant impact on sample data reported.

Analytical Report Number : 22-10488

Project / Site name: Queens Road Wimbledon

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2517132	1	None Supplied	0.2	Grey sand with gravel.
2517133	2	None Supplied	0.25	Brown clay and sand with rubble and gravel
2517134	3	None Supplied	0.2	Brown clay and sand with gravel.
2517135	4	None Supplied	0.3	Brown clay and sand with gravel and brick.
2517136	5	None Supplied	0.2	Light brown clay and sand with gravel and vegetation.

Analytical Report Number : 22-10488 Project / Site name: Queens Road Wimbledon

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in acetonitrile followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics) Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	w	NONE

Analytical Report Number : 22-10488

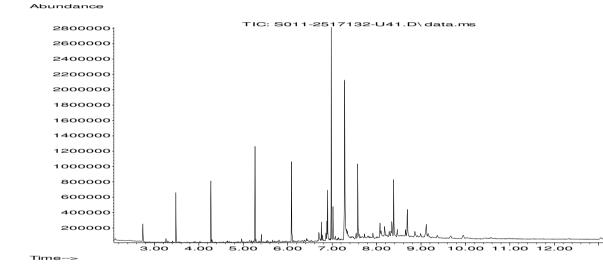
Project / Site name: Queens Road Wimbledon

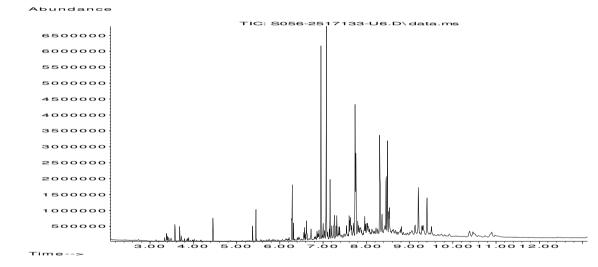
Water matrix abbreviations:

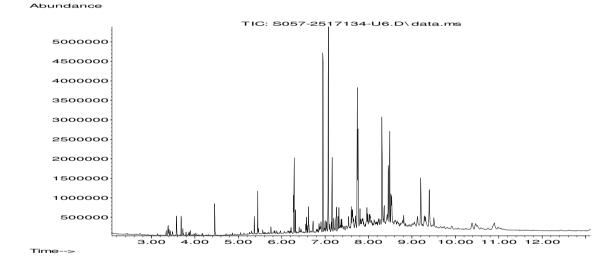
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

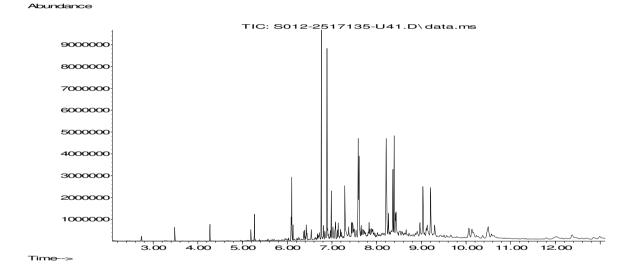
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	NONE
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

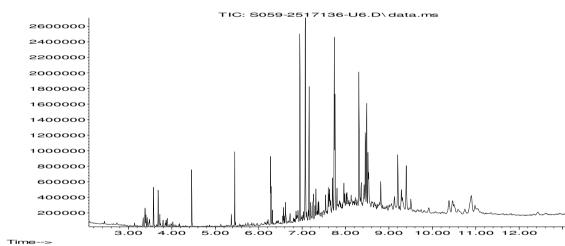
For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.


Information in Support of Analytical Results


List of HWOL Acronyms and Operators


Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Abundance

APPENDIX 3

DESSICATION

DESICCATION

Classification

The removal of moisture from a soil as a result of external influences with a constant stress regime, results in shrinkage or settlement of the soil. The magnitude of shrinkage is dependent upon the geological stress history of the soil, its clay content and the composition of the clay minerals. Under normal climatic conditions, there is a seasonal cyclic variation in soil moisture and, hence, volume change, which extends to depths of approximately 1m. When the soil moisture deficit attains a critical value, the shrinkage of the soil can become significant. In these circumstances, the soil can be regarded as being present in a desiccated state.

Causes

A common cause of desiccation consists of the reduction in soil moisture by tree root action. In the absence of a water table at shallow depth, root action of trees will reduce the soil moisture level in order to maintain growth. In general terms, the increase in rainfall which occurs during winter periods will allow for some replacement of the moisture content of the soil, particularly where isolated or immature trees are concerned.

However, when drought summer conditions or limited winter rainfall occurs, desiccated zones will develop within the zone of influence of tree roots. In woodland, desiccation develops as it is not possible for rainfall to overcome the soil moisture deficit. Other causes of desiccation, which have created problems to structures, include incorrectly installed and insulated heating pipes or ducts and industrial processes, ie furnaces or brick kilns.

Effects

The development of desiccation in clay soils will result in an increase in strength of the material. In addition, negative pore water pressure or soil suction will develop. Any foundation system located within soil which is subject to a reduction in soil moisture can experience structural distress, which results from the loss in volume or shrinkage of the ground. Also, if the source of the desiccation is removed, there will be heave of the soils as a result of an increase in equilibrium water content

It is evident, therefore, that foundation systems founded in soils which are actively experiencing an increase or decrease in soil moisture, will be subject to either heave or settlement, which can induce stresses within the structure. It should also be appreciated that a desiccated soil, which is experiencing an increase in equilibrium water content, will attempt to increase its volume in a horizontal as well as vertical plane. It is important, therefore, to ensure that horizontal movements do not apply differential stresses to structural elements, by incorporating collapsible membranes within remedial works.

Identification

A soil in a state of equilibrium is present in a semi-solid state. At the onset of desiccation, the condition of the soil moves towards the boundary between a solid and semi-solid state, this boundary being defined as the plastic limit of the soil. It follows, therefore, that when the natural water content of a soil lies close to, or falls below, the value of the plastic limit, the soil can be considered to be desiccated.

An alternative proposal was made by Driscoll (1983), who related the soil suction induced by desiccation to a function of the liquid limit of the soil. In general terms, desiccation is assumed to be present when the moisture content falls below a level of 40% liquid limit. The arbitrary factor of 0.4 relates to a soil suction value proposed by Croney (1977) and may vary with the composition and mineralogy of different soil types. This approach is only considered to be valid over a limited depth range as the overburden effect will result in a natural reduction in soil moisture and result in the development of negative pore pressures.

A further approach, which considers the shear strength of the clay, Pugh et al (1995), recognises the fact that a reduction in soil moisture will result in an increase in undrained shear strength as well as the development of negative pore pressures. Whilst this approach has a considerable amount of merit, care is required in establishing the value of the soil's in situ shear strength, particularly if it is not possible to obtain representative "undisturbed" samples from cable percussion boreholes. The proposal made in the Pugh paper that the simple pocket penetrometer will provide accurate consistent results should be treated with care, as the pocket penetrometer can take no account of the effects of disturbance and remoulding that are inevitable when completing a trial pit with a mechanical excavator. It is for this reason that this Company attempts to establish the shear strength of clay soils by using the Geonor Field Vane. With this test equipment the appropriate-sized vane is pushed into the side of the pit, through the thin disturbed zone which is caused by the teeth of the bucket during excavation. Furthermore, by use of the 'blank' probe, it is possible to take account of any skin friction which builds up on the shaft of the vane and thus provide a more accurate assessment of the shear strength of the soils.

Hence, a combination of the methods discussed above should be considered in order to confirm whether the development of soil moisture reduction to achieve a desiccated state has occurred within a particular site. The data for affected areas should, where possible, be compared with soils which lie outside the influence of tree root bulbs and may, therefore, be considered to be present in a stable and equilibrium state.

References

Croney D (1977)	The Design and Performance of Road Pavements London HMSO pp 674
Driscoll R (1983)	The Influence of Vegetation on the Swelling and Shrinking of Clay Soils in Britain Geotechnique 33.4 pp 93-105
Pugh RS, Parnell PG and Parks RD (1995)	A rapid and reliable on site method of assessing desiccation in clay soils Geotechnical Engineering 13 Jan 1995 pp 25—30

APPENDIX 4

WASTE

WASTE CLASSIFICATION

The European Waste Framework Directive is implemented in the UK by the 2002 Landfill Regulations, together with a number of other acts and regulations. A key part of this process is to establish the hazardous properties of potential waste. The classification and definition of hazardous waste is interpreted within the Environment Agency guidance WM3 and all wastes require classifying in accordance with the European Waste Catalogue [EWC]. The EWC is a detailed list of typical industry waste types and each has a 6 digit code. Typically the appropriate EWC codes for excavated soil being disposed off site are:

- 17 05 03* soil and stones containing dangerous substances, or
- 17 05 04 soil and stones other than those mentioned in 17 05 03

If excavated soils are to be discarded or exported from site then they would be considered controlled waste and require classification. However, if soils can be re-used on site then they are not considered to be controlled waste. A Desk Study, soil descriptions, laboratory chemical analysis and risk assessment can all contribute to basic waste characterisation. Depending upon the chemical composition or levels of contaminants in the waste (e.g. metals, TPH, asbestos), soil and stones can either be hazardous or nonhazardous. Waste Acceptance Criteria [WAC] test results are used to determine the suitability of the waste intended for disposal against the acceptance criteria for a particular class of landfill site. WAC tests are not used for the classification of waste soils and are only required for inert or hazardous excavated material which is destined for landfill.

Wastes containing asbestos with a concentration of >0.10% weight/weight (w/w) are generally considered to be hazardous. While waste with <0.10% w/w of asbestos are considered non-hazardous. Where free fibres or fibrous asbestos is present at concentrations of >0.001% then these are considered to pose a risk to human health and are deemed hazardous waste. These waste materials also require a suitably licensed company to handle them.

Waste Treatment

It is a requirement of the 2002 Landfill Regulations that all wastes must undergo some form of pre-treatment prior to disposal at an appropriately licensed landfill. Treatment is defined using a 'three-point test' and can include physical, chemical, biological or thermal processes, which must change the characteristics of the waste in order to:

- reduce its volume, or
- reduce its hazardous nature, or
- facilitate its handling, or
- enhance its recovery.

The exceptions to this are:

- inert waste for which treatment is not technically feasible.
- it is waste other than inert waste and treatment would not reduce its quantity or its hazards to human health or the environment.

The waste producer should either treat their own waste or ensure that the waste will be treated by a subsequent handler. The waste producer should record the type and amount of pre-treatment undertaken prior to disposal.

Examples of treatment include mechanical segregation or sorting, compositing, soil treatment hubs and incineration. This can include physical sorting of waste soil types into separate stockpiles at the producer site, e.g. topsoil, made ground and natural clay, sand or gravels.

Waste Classification Report

HazWasteOnline™ classifies legislation and the rules and c not assessed). It is the respor a) understand the origin of b) select the correct List o c) confirm that the list of d d) select and justify the ch e) correctly apply moisture f) add the meta data for th g) check that the classificat	S9SDY-4R8AZ-4LLPI		
To aid the reviewer, the labora	tory results, assumptions and justifications mana	ged by the classifier are highlighted in pale yellow.	
Job name			
22-10488_HWOL_Results	3		
Description/Comment	te		
residential redevelopment			
Ducient		0.11-	
Project 22/12498/KJC		Site Queens Road, Wimbledon	
Classified by			
Name: Keith Clark Date: 21 Dec 2022 10:47 GMT Telephone:	Company: Albury SI Ltd Miltons Yard, Petworth Rd Witley GU8 5LH	HazWasteOnline [™] provides a two day, hazardous waste clas use of the software and both basic and advanced waste clas has to be renewed every 3 years. HazWasteOnline [™] Certification: Course Hazardous Waste Classification	
Purpose of classificat	tion		
2 - Material Characterisati	on		
Address of the waste			
152-154 Queens Road, W	/imbledon, London	Post	t Code SW19 8LX
SIC for the process gi	iving rise to the waste		
-	ry/producer giving rise to the waste		
redevelopment of site			
Description of the spe	ecific process, sub-process and/or a	activity that created the waste	
waste created during foun	dation excavation		

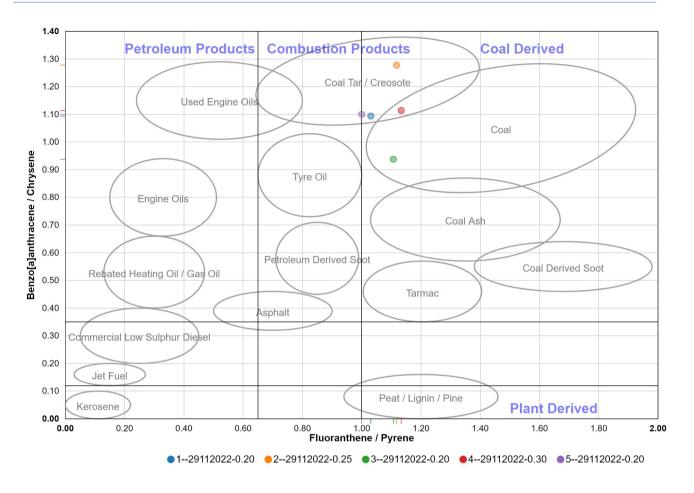
Description of the waste made ground

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	129112022-0.20		Non Hazardous		4
2	229112022-0.25		Non Hazardous		7
3	<mark>329112022-0.20</mark>		Non Hazardous		10
4	429112022-0.30		Non Hazardous		13
5	529112022-0.20		Non Hazardous		16

Related documents

# Name	Description
1 22-10488_HWOL_Results.hwol	i2 Analytical .hwol file used to populate the Job
2 Example waste stream template for contaminated soils	waste stream template used to create this Job


Report

Created by: Keith Clark	Created date: 21 Dec 2022 10:47 GMT
Appendices	Page

- + F - · · · · · · · · · · · · · · · · · ·	
Appendix A: Classifier defined and non GB MCL determinands	19
Appendix B: Rationale for selection of metal species	20
Appendix C: Version	21

Double Ratio PAH Plot

Disclaimer

The domains, oval areas and the plotted points are **indicators only** and must be combined with other lines of evidence to form conclusions. Samples marked with an empty circle are not plotted as they fall outside of the graph's boundaries.

Credits

The domains and the horizontal and vertical lines are derived from Yunker et al. 2002 (Organic Geochemistry 33, 489-515) The oval areas and their labels are with kind permission of Jones Environmental Forensics Limited (now Element Materials Technology)

Classification of sample: 1--29112022-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
129112022-0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
14%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr				26	mg/kg	1.32	29.522	mg/kg	0.00295 %	1	
		033-003-00-0	215-481-4	1327-53-3	-								
2	4		,	4004 50 0		6.8	mg/kg	2.775	16.23	mg/kg	0.00162 %	\checkmark	
-	•	004-003-00-8	215-133-1	1304-56-9	-							-	
3	4	boron { diboron tric 005-008-00-8	215-125-8	1303-86-2		6.6	mg/kg	3.22	18.276	mg/kg	0.00183 %	\checkmark	
-	•			1303-80-2								i -	
4	4	048-002-00-0	215-146-2	1306-19-0		<0.2	mg/kg	1.142	<0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
5	4		nium(III) compound			22	mg/kg	1.462	32.154	mg/kg	0.00322 %		
			215-160-9	1308-38-9						00			
6	4		he exception of bar	ds { chromium (VI) ium chromate and		<1.2	mg/kg	2.27	<2.724	mg/kg	<0.000272 %		<lod< th=""></lod<>
		024-017-00-8											
7	4	copper { dicopper of				120	mg/kg	1.126	116.192	mg/kg	0.0116 %	\checkmark	
		029-002-00-X	215-270-7	1317-39-1									
8	4				1	110	110 mg/kg	1.56	147.559 mg/kg	0.00946 %	\checkmark		
	-	082-004-00-2	231-846-0	7758-97-6								-	
9	4	manganese { mang 025-003-00-4	• · ·	7705 07 7		410	mg/kg	2.749	969.144	mg/kg	0.0969 %	\checkmark	
-	•		232-089-9	7785-87-7	-							-	
10	4	080-010-00-X	231-299-8	7487-94-7		0.7	mg/kg	1.353	0.815	mg/kg	0.0000815 %	\checkmark	
	æ			1-01-04-1								+	
11	*	028-035-00-7	238-766-5	14721-18-7		64	mg/kg	2.976	163.814	mg/kg	0.0164 %	\checkmark	
12	4	selenium { nickel s	elenate }			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
12		028-031-00-5	239-125-2	15060-62-5			iiig/kg	2.004	~2.004	iiig/kg	<0.000200 /8		
13	4					140	mg/kg	1.245	149.864	mg/kg	0.015 %	1	
		030-013-00-7	215-222-5	1314-13-2								-	
14	Θ	TPH (C6 to C40) petroleum group				27	mg/kg		23.22	mg/kg	0.00232 %	\checkmark	
15		tert-butyl methyl et 2-methoxy-2-methy	ylpropane	TPH		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
<u> </u>	-	603-181-00-X	216-653-1	1634-04-4	-								
16		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		001-020-00-0	200-100-1	11-40-2	1								

Page 4 of 22

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Used
17		toluene 601-021-00-3	203-625-9	108-88-3		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
40	8	ethylbenzene	203-023-9	100-00-3	+	0.005			0.005				1.05
18		601-023-00-4	202-849-4	100-41-4		<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of compl ferricyanides and r specified elsewher	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
21	8	006-007-00-5 рН				8	pН		8	pН	8pH		
		naphthalene		PH	+							\vdash	
22		601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	8	acenaphthylene	bor 017 4	boo oc c		0.07	mg/kg		0.0602	mg/kg	0.00000602 %	\checkmark	
		acenaphthene	205-917-1	208-96-8								\vdash	
24	9		201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
25	8	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
26	0	phenanthrene	201-581-5	85-01-8	_	0.37	mg/kg		0.318	mg/kg	0.0000318 %	\checkmark	
27	8	anthracene	204-371-1	120-12-7		0.08	mg/kg		0.0688	mg/kg	0.00000688 %	\checkmark	
28	8	fluoranthene	205-912-4	206-44-0		1	mg/kg		0.86	mg/kg	0.000086 %	\checkmark	
29	8	pyrene	203-312-4	129-00-0		0.97	mg/kg		0.834	mg/kg	0.0000834 %	~	
30		benzo[a]anthracen 601-033-00-9		56-55-3		0.7	mg/kg		0.602	mg/kg	0.0000602 %	√	
31		chrysene 601-048-00-0	205-923-4	218-01-9		0.64	mg/kg		0.55	mg/kg	0.000055 %	~	
32		benzo[b]fluoranthe 601-034-00-4	1	205-99-2		0.79	mg/kg		0.679	mg/kg	0.0000679 %	~	
33		benzo[k]fluoranthe 601-036-00-5		207-08-9		0.38	mg/kg		0.327	mg/kg	0.0000327 %	~	
34		benzo[a]pyrene; be 601-032-00-3	1	1		0.61	mg/kg		0.525	mg/kg	0.0000525 %	~	<u> </u>
35	_	indeno[123-cd]pyre	1	193-39-5		0.39	mg/kg		0.335	mg/kg	0.0000335 %	~	
36		dibenz[a,h]anthrac 601-041-00-2	ene			0.08	mg/kg		0.0688	mg/kg	0.00000688 %	√	
37	8	benzo[ghi]perylene		53-70-3		0.45	mg/kg		0.387	mg/kg	0.0000387 %	√	
38	8	monohydric pheno	205-883-8 Is	191-24-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
39		vanadium { ^a diva pentoxide }				72	mg/kg	1.785	110.539	mg/kg	0.0111 %	~	
40	\$	023-001-00-8 sulfur { <mark>sulfur</mark> }	215-239-8	1314-62-1		160	mg/kg		137.6	mg/kg	0.0138 %	√	
		016-094-00-1	231-722-6	7704-34-9						Total:	0.188 %	\vdash	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۲	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because wm3 example

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00232%)

. . .

Classification of sample: 2--29112022-0.25

Sample details

Sample name: LoW C	Code:
229112022-0.25 Chapt	ter: 17: Construction and Demolition Wastes (including excavated soi
Moisture content:	from contaminated sites)
14% Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)	03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		17	mg/kg	1.32	19.303	mg/kg	0.00193 %	\checkmark	
2	4	beryllium { berylliu 004-003-00-8		1304-56-9		1.1	mg/kg	2.775	2.625	mg/kg	0.000263 %	\checkmark	
3	4	boron { diboron tric 005-008-00-8	<pre>xide; boric oxide } 215-125-8</pre>	1303-86-2	_	0.9	mg/kg	3.22	2.492	mg/kg	0.000249 %	\checkmark	
4	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		<0.2	mg/kg	1.142	<0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
5	4	chromium in chrom chromium(III) oxide		s {	_	28	mg/kg	1.462	40.924	mg/kg	0.00409 %		
6	4	chromium in chrom compounds, with th of compounds spe 024-017-00-8	he exception of bar	ls { chromium (VI) ium chromate and	_	<1.2	mg/kg	2.27	<2.724	mg/kg	<0.000272 %		<lod< td=""></lod<>
7	~		o <mark>xide; copper (I) ox</mark> 215-270-7	i <mark>de</mark> } 1317-39-1		53	mg/kg	1.126	51.318	mg/kg	0.00513 %	~	
8	4	lead { lead chroma 082-004-00-2	te } 231-846-0	7758-97-6	1	280	mg/kg	1.56	375.603	mg/kg	0.0241 %	\checkmark	
9	4	manganese { mang 025-003-00-4	g <mark>anese sulphate</mark> } 232-089-9	7785-87-7		210	mg/kg	2.749	496.391	mg/kg	0.0496 %	\checkmark	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.6	mg/kg	1.353	0.698	mg/kg	0.0000698 %	\checkmark	
11	4	nickel { nickel chro 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7	-	21	mg/kg	2.976	53.751	mg/kg	0.00538 %	\checkmark	
12	4	selenium {	<mark>elenate</mark> } 239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
13	4	zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2	-	170	mg/kg	1.245	181.977	mg/kg	0.0182 %	\checkmark	
14	8	TPH (C6 to C40) p	etroleum group	ТРН		240	mg/kg		206.4	mg/kg	0.0206 %	\checkmark	
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	, ,	1634-04-4		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>

www.hazwasteonline.com

#		Ľ	Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor	•		value	MC A	Used
17		toluene 601-021-00-3 203	0.005.0	100.00.0		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
-		ethylbenzene	3-625-9	108-88-3	-							H	
18	۲		2-849-4	100-41-4	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xylene										H	
19		601-022-00-9 202 203 203	2-422-2 [1] 3-396-5 [2] 3-576-3 [3] 5-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	4	cyanides { ^a salts of h exception of complex of ferricyanides and mero specified elsewhere in	cyanides such a curic oxycyanide	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5 pH			_							H	
21	۲			PH	-	8.9	рН		8.9	рН	8.9 pH		
22		naphthalene		<u>r</u> · ·		0.65	mg/kg		0.559	mg/kg	0.0000559 %	\checkmark	
			2-049-5	91-20-3	1	0.00	ing/kg		0.009		0.0000000000000000000000000000000000000	×	
23	۲	acenaphthylene	5-917-1	208-96-8	-	3.4	mg/kg		2.924	mg/kg	0.000292 %	\checkmark	
24		acenaphthene				0.40	m ~//		0.400	m~//	0.0000460.0/		
24		201	1-469-6	83-32-9		0.19	mg/kg		0.163	mg/kg	0.0000163 %	\checkmark	
25	۲	fluorene	005 5	00.70.7		0.51	mg/kg		0.439	mg/kg	0.0000439 %	\checkmark	
		201 phenanthrene	1-695-5	86-73-7								\square	
26	۲	·	1-581-5	85-01-8	-	9.6	mg/kg		8.256	mg/kg	0.000826 %	\checkmark	
27	8	anthracene	4-371-1	120-12-7		3.4	mg/kg		2.924	mg/kg	0.000292 %	\checkmark	
28	8	fluoranthene				38	mg/kg		32.68	mg/kg	0.00327 %	\checkmark	
-	8	pyrene 205	5-912-4	206-44-0	-							\square	
29			4-927-3	129-00-0		34	mg/kg		29.24	mg/kg	0.00292 %	\checkmark	
30		benzo[a]anthracene 601-033-00-9 200	0-280-6	56-55-3		23	mg/kg		19.78	mg/kg	0.00198 %	\checkmark	
31		chrysene 601-048-00-0 205	5-923-4	D19 01 0		18	mg/kg		15.48	mg/kg	0.00155 %	\checkmark	
	$\left - \right $	benzo[b]fluoranthene	5-323-4	218-01-9	$\left \right $							\vdash	
32			5-911-9	205-99-2		25	mg/kg		21.5	mg/kg	0.00215 %	\checkmark	
33		benzo[k]fluoranthene				7.4	mg/kg		6.364	mg/kg	0.000636 %	\checkmark	
		601-036-00-5 205	5-916-6	207-08-9	1	1.4	mg/kg		0.004		0.00000070	ľ	
34		benzo[a]pyrene; benzo 601-032-00-3 200	o[def]chrysene	50-32-8		19	mg/kg		16.34	mg/kg	0.00163 %	\checkmark	
35	8	indeno[123-cd]pyrene			1	12	mg/kg		10.32	mg/kg	0.00103 %	~	
36		205 dibenz[a,h]anthracene	5-893-2	193-39-5		3	mg/kg		2.58	mg/kg	0.000258 %	\square	
30)-181-8	53-70-3		5	mg/kg		2.30	ing/kg	0.000200 %	\checkmark	
37	۲	benzo[ghi]perylene	5-883-8	191-24-2		12	mg/kg		10.32	mg/kg	0.00103 %	\checkmark	
38	0	monohydric phenols				<1	mg/kg		<1	mg/kg	<0.0001 %	H	<lod< td=""></lod<>
00				P1186	1		ing/kg			ing/kg	C0.0001 /0	Ц	
39	4	vanadium { [●] divanad pentoxide }				56	mg/kg	1.785	85.975	mg/kg	0.0086 %	~	
40			5-239-8	1314-62-1	+	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
-0		016-094-00-1 231	1-722-6	7704-34-9			iiig/kg		~ 3			μ	
										Total:	0.158 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۵	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because wm3 example

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0206%)

Classification of sample: 3--29112022-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
329112022-0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
9.4%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 9.4% Wet Weight Moisture Correction applied (MC)

#		Determin EU CLP index EC Num number		Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4	1327-5	3-3		12	mg/kg	1.32	14.355	mg/kg	0.00144 %	\checkmark	
2	4		1304-5			0.77	mg/kg	2.775	1.936	mg/kg	0.000194 %	\checkmark	
3	4					1.5	mg/kg	3.22	4.376	mg/kg	0.000438 %	~	
4	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2	1306-1	9-0		0.5	mg/kg	1.142	0.517	mg/kg	0.0000517 %	\checkmark	
5	4	chromium in chromium(III) com chromium(III) oxide (worst case 215-160-9		8-9		19	mg/kg	1.462	27.77	mg/kg	0.00278 %		
6	4	chromium in chromium(VI) con compounds, with the exception of compounds specified elsewith 024-017-00-8	of barium chr	omate and		<1.2	mg/kg	2.27	<2.724	mg/kg	<0.000272 %		<lod< td=""></lod<>
7	4		e <mark>r (I) oxide</mark> } 1317-3	9-1		39	mg/kg	1.126	39.782	mg/kg	0.00398 %	~	
8	4	lead { lead chromate } 082-004-00-2 231-846-0	7758-9	7-6	1	100	mg/kg	1.56	141.319	mg/kg	0.00906 %	\checkmark	
9	4	manganese { manganese sulp 025-003-00-4 232-089-9	hate } 7785-8	7-7		340	mg/kg	2.749	846.668	mg/kg	0.0847 %	\checkmark	
10	4	mercury { mercury dichloride } 080-010-00-X 231-299-8	7487-9	4-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
11	4	nickel { nickel chromate } 028-035-00-7 238-766-5	14721-	18-7		15	mg/kg	2.976	40.447	mg/kg	0.00404 %	\checkmark	
12	4	selenium { nickel selenate } 028-031-00-5 239-125-2	15060-	62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
13	4	zinc { zinc oxide } 030-013-00-7 215-222-5	1314-1	3-2		110	mg/kg	1.245	124.048	mg/kg	0.0124 %	\checkmark	
14	8	TPH (C6 to C40) petroleum gro	oup TPH			344	mg/kg		311.664	mg/kg	0.0312 %	\checkmark	
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1	1634-0	4-4		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
16		benzene 601-020-00-8 200-753-7	71-43-2	2		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>

Page 10 of 22

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			T actor			Value	MC /	Useu
17		toluene	000 005 0	1.00.00.0		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	-								
18	۲	ethylbenzene 601-023-00-4	202-849-4	100-41-4	_	<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		xylene	202-649-4	100-41-4	-								
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	lex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5											
21	0	рН		PH		8.9	рН		8.9	рН	8.9 pH		
22		naphthalene				0.6	mg/kg		0.544	mg/kg	0.0000544 %	\checkmark	
_		601-052-00-2	202-049-5	91-20-3	1								
23	۵	acenaphthylene	205-917-1	208-96-8		2.8	mg/kg		2.537	mg/kg	0.000254 %	\checkmark	
24	۵	acenaphthene	201-469-6	83-32-9		0.62	mg/kg		0.562	mg/kg	0.0000562 %	\checkmark	
25	0	fluorene	201-695-5	86-73-7		0.78	mg/kg		0.707	mg/kg	0.0000707 %	\checkmark	
26	0	phenanthrene	201-581-5	85-01-8		11	mg/kg		9.966	mg/kg	0.000997 %	\checkmark	
27	0	anthracene	204-371-1	120-12-7		3.6	mg/kg		3.262	mg/kg	0.000326 %	\checkmark	
28	0	fluoranthene		206-44-0		31	mg/kg		28.086	mg/kg	0.00281 %	\checkmark	
29	0	pyrene	205-912-4			28	mg/kg		25.368	mg/kg	0.00254 %	✓	
30		benzo[a]anthracen		129-00-0		15	mg/kg		13.59	mg/kg	0.00136 %	~	
		601-033-00-9 chrysene	200-280-6	56-55-3	-								
31		601-048-00-0	205-923-4	218-01-9	_	16	mg/kg		14.496	mg/kg	0.00145 %	\checkmark	
32		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		19	mg/kg		17.214	mg/kg	0.00172 %	\checkmark	
33		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		4.5	mg/kg		4.077	mg/kg	0.000408 %	\checkmark	
34		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		15	mg/kg		13.59	mg/kg	0.00136 %	\checkmark	
35	0	indeno[123-cd]pyre	1	193-39-5		9	mg/kg		8.154	mg/kg	0.000815 %	\checkmark	
36		dibenz[a,h]anthrac 601-041-00-2	1	53-70-3		2.2	mg/kg		1.993	mg/kg	0.000199 %	\checkmark	
37	0	benzo[ghi]perylene	9			9.7	mg/kg		8.788	mg/kg	0.000879 %	✓	
38	۵	monohydric pheno	205-883-8 Is	191-24-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	4	vanadium { [®] diva	nadium pentaoxide	P1186	-								
39		pentoxide } 023-001-00-8	215-239-8	1314-62-1		38	mg/kg	1.785	61.46	mg/kg	0.00615 %	\checkmark	
40	4		231-722-6	7704-34-9		31	mg/kg		28.086	mg/kg	0.00281 %	\checkmark	
		010 00 00 10	F01122.0	6-40 40 40						Total:	0.175 %	+	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۲	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because wm3 example

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0312%)

. . .

Classification of sample: 4--29112022-0.30

Sample details

Sample name:	LoW Code:	
429112022-0.30	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
18%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)
	Entry:	· ·

Hazard properties

None identified

Determinands

Moisture content: 18% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		17	mg/kg	1.32	18.405	mg/kg	0.00184 %	\checkmark	
2	4	beryllium { berylliun 004-003-00-8	<mark>m oxide</mark> } 215-133-1	1304-56-9		1.5	mg/kg	2.775	3.414	mg/kg	0.000341 %	\checkmark	
3	4	boron { diboron tric 005-008-00-8	xide; boric oxide } 215-125-8	1303-86-2		0.6	mg/kg	3.22	1.584	mg/kg	0.000158 %	\checkmark	
4	4	cadmium { cadmiu 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.7	mg/kg	1.142	0.656	mg/kg	0.0000656 %	\checkmark	
5	4	chromium in chrom chromium(III) oxide	(/ I	s { • 1308-38-9	_	27	mg/kg	1.462	39.462	mg/kg	0.00395 %		
6	4	chromium in chrom compounds, with th of compounds spe 024-017-00-8	hium(VI) compound	ls { chromium (VI) ium chromate and		<1.2	mg/kg	2.27	<2.724	mg/kg	<0.000272 %		<lod< th=""></lod<>
7	4		oxide; copper (I) ox 215-270-7	i <mark>de</mark> } 1317-39-1		88	mg/kg	1.126	81.244	mg/kg	0.00812 %	~	
8	4	lead { lead chroma 082-004-00-2	te } 231-846-0	7758-97-6	1	320	mg/kg	1.56	409.295	mg/kg	0.0262 %	\checkmark	
9	4	manganese {	ganese sulphate } 232-089-9	7785-87-7		250	mg/kg	2.749	563.456	mg/kg	0.0563 %	\checkmark	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.6	mg/kg	1.353	0.666	mg/kg	0.0000666 %	\checkmark	
11	4	nickel { nickel chro 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		24	mg/kg	2.976	58.573	mg/kg	0.00586 %	\checkmark	
12	4	selenium { nickel s 028-031-00-5	<mark>elenate</mark> } 239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
13	4	zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2	_	340	mg/kg	1.245	347.026	mg/kg	0.0347 %	\checkmark	
14	8	TPH (C6 to C40) p	etroleum group	ТРН		645	mg/kg		528.9	mg/kg	0.0529 %	\checkmark	
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	, ,	1634-04-4	_	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>

www.hazwasteonline.com

#			Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Used
17		toluene 601-021-00-3	203-625-9	108-88-3	_	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		ethylbenzene	203-023-3	100-00-3								H	
18		601-023-00-4	202-849-4	100-41-4	_	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
	_	xylene	202 043 4	100 41 4								H	
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	~	cyanides { ⁹ salts exception of compl ferricyanides and r specified elsewher	lex cyanides such nercuric oxycyanic	as ferrocyanides,		2.4	mg/kg	1.884	4.522	mg/kg	0.000452 %		
		006-007-00-5											
21	0	рН				8.4	pН		8.4	pН	8.4 pH		
				PH						P			
22		naphthalene 601-052-00-2	202-049-5	91-20-3		2.1	mg/kg		1.722	mg/kg	0.000172 %	\checkmark	
		acenaphthylene		1					1			\square	
23	-	1 3	205-917-1	208-96-8	-	12	mg/kg		9.84	mg/kg	0.000984 %	\checkmark	
		acenaphthene	200 011 1	200 00 0									
24		acchaphaiche	201-469-6	83-32-9	-	0.69	mg/kg		0.566	mg/kg	0.0000566 %	\checkmark	
		fluorene	201 403 0	00 02 0									
25			201-695-5	86-73-7	_	2.1	mg/kg		1.722	mg/kg	0.000172 %	\checkmark	
	-	phenanthrene	201 030 0	00101	-								
26	۳	phenantinene	201-581-5	85-01-8	_	49	mg/kg		40.18	mg/kg	0.00402 %	\checkmark	
-	-	anthracene	201-301-3	05-01-0	+								
27	Θ		204-371-1	120-12-7	_	13	mg/kg		10.66	mg/kg	0.00107 %	\checkmark	
	_	fluoranthene	204-371-1	120-12-1									
28	8	liuorantinene	205-912-4	206-44-0	_	170	mg/kg		139.4	mg/kg	0.0139 %	\checkmark	
	-	pyrene	203-312-4	200-44-0									
29	۲	pyrene	204-927-3	129-00-0	_	150	mg/kg		123	mg/kg	0.0123 %	\checkmark	
	_	benzo[a]anthracen	ļ.	123-00-0	_								
30		601-033-00-9	200-280-6	56-55-3	_	88	mg/kg		72.16	mg/kg	0.00722 %	\checkmark	
	_	chrysene	200-280-0	50-55-5	_								
31		601-048-00-0	205-923-4	218-01-9	-	79	mg/kg		64.78	mg/kg	0.00648 %	\checkmark	
	_	benzo[b]fluoranthe	1	210 01 3	-								
32		601-034-00-4	205-911-9	205-99-2	_	120	mg/kg		98.4	mg/kg	0.00984 %	\checkmark	
	_	benzo[k]fluoranthe		200-33-2								$\left \right $	
33		601-036-00-5	205-916-6	207-08-9	_	40	mg/kg		32.8	mg/kg	0.00328 %	\checkmark	
	-	benzo[a]pyrene; be	1		+						l	\vdash	
34			200-028-5	50-32-8	_	91	mg/kg		74.62	mg/kg	0.00746 %	\checkmark	
		indeno[123-cd]pyre	1	00-02-0	+							\vdash	
35	8		205-893-2	193-39-5	_	56	mg/kg		45.92	mg/kg	0.00459 %	\checkmark	
		dibenz[a,h]anthrac	1	100 00-0	+							\vdash	
36			200-181-8	53-70-3	-	13	mg/kg		10.66	mg/kg	0.00107 %	\checkmark	
		benzo[ghi]perylene	1	00-70-0								\square	
37	8		205-883-8	191-24-2	-	68	mg/kg		55.76	mg/kg	0.00558 %	\checkmark	
	-	monohydric pheno	Į	131-27-2	_							\vdash	
38	8	mononyune prieño	i.j	P1186	4	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	_				-							\square	
39	4	vanadium {	nadium pentaoxid	e; vanadium		67	mg/kg	1.785	08 079	ma/ka	0.00981 %		
39		pentoxide }	045 000 0	4044.00.4	_	07	mg/kg	1.700	85 98.078 mg/kg	0.00301 70	\checkmark		
	-		215-239-8	1314-62-1	_							\vdash	
40	4	sulfur { sulfur }	004 700 0	7704.04.2		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		016-094-00-1	231-722-6	7704-34-9						T · ·	0.00.0/	\square	
										Total:	0.28 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۵	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because wm3 example

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0529%)

Classification of sample: 5--29112022-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

-		
Sample name:	LoW Code:	
529112022-0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
15%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	-	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		8.5	mg/kg	1.32	9.539	mg/kg	0.000954 %	\checkmark	
2	4	beryllium { berylliu	<mark>m oxide</mark> }		ŀ	0.57	mg/kg	2.775	1.345	mg/kg	0.000134 %	~	
	æ	004-003-00-8 boron { diboron tric	215-133-1	1304-56-9	-								
3		005-008-00-8	215-125-8	1303-86-2	-	0.4	mg/kg	3.22	1.095	mg/kg	0.000109 %	\checkmark	
4	4	cadmium { <mark>cadmiu</mark>	,			0.4	mg/kg	1.142	0.388	mg/kg	0.0000388 %	\checkmark	
-		048-002-00-0	215-146-2	1306-19-0	-							-	
5	4	chromium in chrom chromium(III) oxide		s {		18	mg/kg	1.462	26.308	mg/kg	0.00263 %		
6	4	of compounds spe	hium(VI) compound	Is { chromium (VI) ium chromate and		<1.2	mg/kg	2.27	<2.724	mg/kg	<0.000272 %		<lod< td=""></lod<>
7	æ	024-017-00-8 copper { dicopper (oxide; copper (I) ox	ide }				4 4 9 9	00.74		0.00007.0/		
<u> </u>	-	029-002-00-X	215-270-7	1317-39-1		30	mg/kg	1.126	28.71	mg/kg	0.00287 %	\checkmark	
8	4	lead { lead chroma			1	58	mg/kg	1.56	76.899	mg/kg	0.00493 %	\checkmark	
		082-004-00-2 manganese { mang	231-846-0	7758-97-6								-	
9	4	025-003-00-4	• • •	7785-87-7		290	mg/kg	2.749	677.521	mg/kg	0.0678 %	\checkmark	
10	4	mercury { mercury	dichloride }			<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7				1.000		ing/itg			
11	4	nickel { nickel chro 028-035-00-7	mate } 238-766-5	14721-18-7		12	mg/kg	2.976	30.358	mg/kg	0.00304 %	\checkmark	
12	4	selenium {	elenate }			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %	İ.	<lod< td=""></lod<>
	•	028-031-00-5	239-125-2	15060-62-5								-	
13	4	zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2		91	mg/kg	1.245	96.279	mg/kg	0.00963 %	\checkmark	
14	Θ	TPH (C6 to C40) p	etroleum group	ТРН		140	mg/kg		119	mg/kg	0.0119 %	\checkmark	
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	her; MTBE;	1634-04-4		<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
16		benzene	L 10 000 1	1001 01 1		<0.005	mg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
Ľ		601-020-00-8	200-753-7	71-43-2									

Page 16 of 22

#		Determinand			CLP Note	User entere	d data	Conv.	Compound conc.		Classification	MC Applied	Conc. Not
		EU CLP index EC Number CAS Number number		CLP			Factor			value	MC A	Used	
17		toluene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3	_								
18	۲	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4			+								
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	.	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5											
21	8	pН	1			10.1	pН		10.1	pН	10.1 pH		
\vdash		nonhtholo		PH	-							\square	
22		naphthalene 601-052-00-2	202-049-5	91-20-3		0.27	mg/kg		0.23	mg/kg	0.000023 %	\checkmark	
23 24	8	acenaphthylene	202-043-3	51-20-5	-								
	0		205-917-1	208-96-8	-	1.3	mg/kg		1.105	mg/kg	0.000111 %	\checkmark	
	8	acenaphthene	1			0.23	mg/kg		0 196	ma/ka	0.0000196 %	\checkmark	
24			201-469-6	83-32-9		0.23	mg/kg		0.196	mg/kg	0.0000190 /8	~	
25	8	fluorene	201-695-5	86-73-7	_	0.21	mg/kg		0.179	mg/kg	0.0000179 %	\checkmark	
26	8	phenanthrene				3.4	mg/kg		2.89	mg/kg	0.000289 %	\checkmark	
	0		201-581-5	85-01-8								•	
27		anthracene		100.10.7	_	1.3	mg/kg		1.105 m	mg/kg	0.000111 %	\checkmark	
		fluoranthene	204-371-1	120-12-7	_								
28	۲	Indorantinerie	205-912-4	206-44-0	_	16	mg/kg		13.6	mg/kg	0.00136 %	\checkmark	
29	8	pyrene				10			10.6		0.00126.0/	,	
29		204-927-3 129-00-0				16	mg/kg		13.6	mg/kg	0.00136 %	\checkmark	
30		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3			_	11	mg/kg		9.35	mg/kg	0.000935 %	\checkmark	
31		chrysene				10	mg/kg		8.5	mg/kg	0.00085 %	\checkmark	
01		601-048-00-0	205-923-4	218-01-9						ing/kg		~	
32		benzo[b]fluoranthene				13	mg/kg		11.05	mg/kg	0.00111 %	\checkmark	
		601-034-00-4 205-911-9 205-99-2			_								
33		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9	_	3	mg/kg		2.55	mg/kg	0.000255 %	\checkmark	
		benzo[a]pyrene; benzo[def]chrysene											
34		601-032-00-3 200-028-5 50-32-8			-	10	mg/kg		8.5	mg/kg	0.00085 %	\checkmark	
35	8	indeno[123-cd]pyre	205-893-2	193-39-5	-	6	mg/kg		5.1	mg/kg	0.00051 %	\checkmark	
20		dibenz[a,h]anthracene				1 5	m ~ //		4.075		0.000107.0/	,	
36		601-041-00-2	200-181-8	53-70-3	_	1.5	mg/kg		1.275	mg/kg	0.000127 %	\checkmark	
37	۰	benzo[ghi]perylene	9			6.5	mg/kg		5.525	mg/kg	0.000553 %	\checkmark	
38		205-883-8 191-24-2				5.0				59		Ľ	
	8	monohydric pheno	ls	D1100	_	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
39	4	P1186 vanadium { divanadium pentaoxide; vanadium pentoxide }				31	mg/kg	1.785	47.04	mg/kg	0.0047 %	~	
		023-001-00-8 215-239-8 1314-62-1			-		0.0			5.5			
40		sulfur { sulfur }				<5	ma/ka		-5	ma/ka			<lod< td=""></lod<>
40		016-094-00-1	231-722-6	7704-34-9		<0	mg/kg		<5	mg/kg	<0.0005 %		<lud< td=""></lud<>
Total: 0.119 %													

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۲	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because wm3 example

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0119%)

Appendix A: Classifier defined and non GB MCL determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H332, Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Resp. Sens. 1; H334, Skin Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5 Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

PH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

• acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

^e fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

[•] pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data

Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341 , Acute Tox. 3; H331 , Acute Tox. 3; H311 , Acute Tox. 3; H301 , STOT RE 2; H373 , Skin Corr. 1B; H314 , Skin Corr. 1B; H314 >= 3%, Skin Irrit. 2; H315 1 £ conc. < 3%, Eye Irrit. 2; H319 1 £ conc. < 3%, Aquatic Chronic 2; H411

^e divanadium pentaoxide; vanadium pentoxide (EC Number: 215-239-8, CAS Number: 1314-62-1)

GB MCL index number: 023-001-00-8

Description/Comments:

Additional Hazard Statement(s): Carc. 1B; H350 , Acute Tox. 3; H301 , Acute Tox. 2; H330

Reason for additional Hazards Statement(s):

20 Sep 2022 - Carc. 1B; H350 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be Carc. 1B; H350. The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

28 Sep 2022 - Acute Tox. 3; H301 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be "Acute tox 3; H301". The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

28 Sep 2022 - Acute Tox. 2; H330 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be "Acute tox 2; H330". The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

beryllium {beryllium oxide}

Reasonable case CLP species based on hazard statements/molecular weight. Industrial sources include: most common (non alloy) form, used in ceramics (edit as required)

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

manganese {manganese sulphate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc oxide}

no chromium vi

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

vanadium {divanadium pentaoxide; vanadium pentoxide}

worst case

sulfur {sulfur}

worst case

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2022.354.5456.10119 (20 Dec 2022) HazWasteOnline Database: 2022.354.5456.10119 (20 Dec 2022)

This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021